Your Guide to Educating Community Members About Mosquitoes

beautiful-overlook-of-community

Government leaders work hard to keep their communities safe. Mosquito management is an important part of these efforts. The threat of West Nile, Dengue, EEE and other mosquito-borne diseases can frighten the public and detract from enjoyment of outdoor amenities. No leader wants to experience the stress or public outrage associated with a disease outbreak – not to mention the impact it has on the community that they care so much about. Mosquito prevention is key, and public education is a crucial component of preventing bites and reducing breeding habitats.

Most people view mosquitoes as nuisances that hinder the enjoyment of camping, gardening, sports games, nature walks, fishing, neighborhood cookouts, and other outdoor activities. While this is true, mosquitoes are also responsible for killing more than one million people and animals worldwide annually through the transmission of diseases. When the general public understands how these diseases are spread, the habitats in which mosquitoes breed, and effective ways to protect themselves when outdoors, they can help limit the dangerous impact of mosquitoes and reinforce efforts of an Integrated Mosquito Management program.

Community-learning-dip-cup

Community education is a critical part of an Integrated Mosquito Management program – a comprehensive management approach that targets mosquitoes at every stage of their life cycle, including surveillance, disease testing and the implementation of ground or aerial control measures when necessary. Mosquito management efforts have a greater chance of long-term success when supported by the public. As a mosquito management company with a mission of protecting public health, VDCI collaborates with government agencies, mosquito abatement districts, health departments, schools, and public organizations to disseminate information across communities. 

For maximal impact, messaging and resources should educate the larger community about the importance of personal protection and explain the influence every person has on mosquito populations in their area: 

Personal Protection

One of the most beneficial ways to prevent the spread of mosquito-borne diseases is personal protection. Physical and chemical barriers can effectively keep bites at bay when spending time outdoors. 

Avoid the outdoors during dawn and dusk hours when mosquitoes are most active.

CDCMosquitoPHOCO-283

Property Maintenance

Residence and property maintenance also play a vital role in mosquito prevention. Mosquitoes require standing water in order to breed. It’s essential to identify and regularly drain containers where water may collect. These may include:

  • Bird baths
  • Flower pots and buckets
  • Outdoor pet bowls
  • Children’s toys and playsets
  • Tires and lawncare equipment
  • Pool covers
  • Potholes
  • Tree stumps
  • Canoes and kayaks

Consistently monitoring and clearing gutters and stormwater ditches is important to ensure water is correctly diverted during rainstorms. Mosquitoes also prefer cool, shady areas. Keeping weeds, bushes, and shrubbery trimmed can help reduce places of respite.

Communication Channels

It’s important to distribute information through as many communication channels as possible. Parish and county websites are influential platforms to provide mosquito prevention tips and links to relevant resources. Sharing this information through social media may expand messaging even further. Additionally, instructing city representatives during council meetings can provide them with actionable knowledge to educate their constituents.

Utilizing industry experts to educate community members is also a favorable option. Presentations at schools, libraries, local clubs, senior citizen homes, boy scouts, and public health expos can also help to spread the word about mosquito risks. By focusing on protection and prevention, the community can work together to reduce the risk of disease transmission.

A note on DIY Solutions 

It can be tempting for citizens to purchase yard sprays or foggers from home improvement stores, but in the long run, these products can have disastrous consequences. Many products available to consumers are not registered with the Environmental Protection Agency (EPA) for the management of mosquitoes. Overuse of these products, as well as failure to follow label guidelines, can allow mosquitoes to develop resistance to insecticides, including the more advanced products that are only accessible to licensed mosquito management experts. 

Instead of DIY spraying, homeowners can support the mosquito management program in their local community by following the best practices mentioned above and becoming educated on the science-backed solutions included in an IMM program. Professional IMM programs may involve: 

Knowledge is key when it comes to reducing dangerous mosquito populations in a community. Ultimately, these preventative efforts can be summed up as the 4 “Ds” – 

  • DEFEND
  • DRESS 
  • DRAIN
  • DAWN & DUSK

As long as citizens understand and incorporate these simple practices into their daily lives, they can help reduce the risk of mosquito-borne diseases.

An educated public is a powerful pillar of an IMM program and a useful measure of its effectiveness. By consistently distributing mosquito control resources, community leaders can help show their commitment to public safety and build trust between the government and the public. At VDCI, we are dedicated to partnering with government entities and health agencies to keep citizens engaged and informed through regular program updates, prevention reminders, and safety warnings as needs arise.

Contact Us to Learn More About Effective Mosquito Prevention Strategies:

VDCI_Logo_square Since 1992, Vector Disease Control International (VDCI) has taken pride in providing municipalities, mosquito abatement districts, industrial sites, planned communities, homeowners associations, and golf courses with the tools they need to run effective mosquito control programs. We are determined to protect the public health of the communities in which we operate. Our mosquito control professionals have over 100 years of combined experience in the field of public health, specifically vector disease control. We strive to provide the most effective and scientifically sound mosquito surveillance and control programs possible based on an Integrated Mosquito Management approach recommended by the American Mosquito Control Association (AMCA) and Centers for Disease Control and Prevention (CDC). VDCI is the only company in the country that can manage all aspects of an integrated mosquito management program, from surveillance to disease testing to aerial application in emergency situations.

2022 Mosquito-Borne Disease Year In Review

West-Nile-Virus-UK-spread-Europe-outbreak-1001738

2022 Mosquito-Borne Disease: Year In Review

With COVID-19, an ongoing “tripledemic” of multiple respiratory diseases, the economy, and politics dominating the headlines in 2022, vector-borne diseases didn’t get much attention in the national spotlight. However, diseases spread by mosquitoes and ticks are on the leading edge of increasing concerns about climate change, and the experts at VDCI continue to monitor their activity so we can keep the public and our clients informed.

This year in review looks at major mosquito-borne diseases in the United States, summarizes case counts in 2022, and highlights key areas of activity. As we kick off a new year, these data points can inform and shape your integrated mosquito management plans, as well as give you information to provide to your citizens, employees, customers, and the public at large to help them protect themselves and their families from mosquito-borne disease.

West Nile Virus

2022 US Case Count: 1,035 human cases; 79 deaths

West Nile continues to be the deadliest mosquito-borne disease in the continental U.S. First reported in 1999, the virus is now considered endemic by public health authorities in most areas.

There are an estimated 200 species of mosquitoes found in the United States; of those, approximately 150 can be vectors of West Nile virus (WNv). Species of the Culex genus are considered to be the primary carriers of the disease both globally and in the U.S., with Culex pipiens, Culex tarsalis, and Culex quinquefasciatus being the primary species that spread West Nile virus in the U.S.

Humans contract WNv when bitten by an infected mosquito. While even healthy adults can contract the disease, West Nile can be especially dangerous for the very young and the very old, as well as anyone with a compromised immune system. Many infected people have no symptoms; however, those that do may have flu-like symptoms, fever, rash, neck stiffness, and headache. For some infected individuals, the disease can be more severe and lead to encephalitis, or swelling of the brain, and be fatal. The U.S. Centers for Disease Control and Prevention (CDC) estimate that 1 in every 150 cases of West Nile lead to the central nervous system being affected, and the onset of neuroinvasive disease. These cases become more severe and can leave people with long-lasting or permanent neurological symptoms.

In 2022*, there were 1,035 human cases of West Nile reported by the CDC in the U.S., with 298 being qualified as neuroinvasive disease. There were 79 fatalities as a result of the disease. Both human cases and deaths from WNv were significantly down from 2021, but since the disease is cyclical, the drop in case counts does not indicate that there is less reason for concern, and some regions of the country reported significantly higher case counts than they’ve ever seen.

Nearly every U.S. state faced West Nile virus, with only 4 reporting no activity of any type: Alaska, Hawaii, Maine, and Montana. None of the 8 reporting U.S. territories had West Nile activity, non-human, or human infections.

States with the highest incidence of human West Nile virus cases
Colorado (204)
California (168)
New York (79)
South Dakota (66)
Nebraska (64)

States with the highest West Nile virus death toll
Colorado (18)
California (11)
Texas (7)
Louisiana (6)
Nebraska (4)
Arizona (4)
Illinois (4)

Get more information on this mosquito-borne disease on our West Nile virus page. If you are concerned about West Nile virus in your community or around your business, connect with us to speak with one of our experts.

Dengue

2022 US Case Count: 1073 human cases, 0 deaths

Dengue is a group of viruses spread to humans by infected Aedes genus mosquitoes, specifically Aedes aegypti and Aedes albopictus; pregnant people can also pass the disease to a fetus. There are 4 common Dengue viruses, denoted as Dengue 1, 2, 3, and 4. Worldwide, there are over 400 million cases annually, and an estimated 40,000 people die each year.

According to the CDC, public health authorities in the United States reported a total of 1,073 cases of Dengue this year. However, the vast majority of those cases were travel-acquired, meaning that the subjects were infected outside of the U.S. Only 59 cases were considered locally transmitted. There were no reported fatalities in the country as a result of Dengue, although this may reflect underreporting.

U.S. territories Guam and Puerto Rico reported a combined total of 828 cases. Unlike the continental U.S., nearly all of these cases in the territories were locally acquired – 820, to be exact. This is not surprising, given the more tropical conditions, and vector abundance in these locales.

One significant development that is worth noting: in 2022, the Dengvaxia vaccine was approved for use in the United States in children august 9 to 16 with laboratory-confirmed results of a previous Dengue infection.

The U.S. case counts in 2022 illustrate a substantial increase in reported cases over both 2021 and 2020, but a slight decrease versus 2019. This could be a reflection of an increase in the traveling public in 2022, since there was a significant post-pandemic return-to-travel. 2019 marked the highest number of Dengue cases reported in the U.S. since 2010 when it became a reportable disease and case counts began being tracked. That makes 2022 the second-highest case count reported in U.S. states in the last 12 years.

This could be an interesting trend to watch around the globe. According to the Pan American Health Organization, in 2022, a number of countries in North, Central, and South America saw substantial increases in human Dengue cases over 2021.

Americas (North, South, Central), 5 countries with highest increases in Dengue human cases 

Country

2021 Dengue Cases

2022 Dengue Cases

Percentage Increase

United States

117

1073

⬆️817.094%

Panama

3095

11172

⬆️260.969%

El Salvador

5572

16542

⬆️196.877%

Guatemala

2861

8407

⬆️193.848%

Nicaragua

36741

97541

⬆️165.483%

The World Health Organization (WHO) tracks Dengue activity around the globe and in early January 2023, issued an update on Dengue in the Western Pacific Region, indicating that activity has substantially increased in many countries including Lao, Malaysia, the Philippines, Singapore, and Viet Nam.

Get more facts and information about Dengue virus from VDCI.

La Crosse Virus Disease

2022 US Case Count: 21 human cases

La Crosse virus is typically spread by Aedes triseriatus, commonly called the Eastern treehole mosquito. This disease most commonly affects children and teenagers.

La Crosse virus disease is endemic in the United States and is considered a reportable illness.

Symptoms of La Crosse virus are similar to those of other mosquito-borne diseases and include fever, headache, nausea and vomiting, and fatigue. However, it can become dangerous if it becomes La Cross encephalitis, which results in infection of the brain that can manifest through seizures, disorientation, loss of vision, and other serious conditions. Fatalities are rare.

Although the CDC’s La Crosse virus website does not reflect case counts after 2020, the agency’s Arbovirus Surveillance System, ArboNet, reports that there were 21 infections in 2022. More than half of these cases were reported in Ohio. The total number of cases is down from 2021, when 34 cases were reported.

U.S. states reporting La Crosse virus cases in 2022

State

Case Count

Minnesota

3

North Carolina

2

Ohio

13

Tennessee

2

West Virginia

1

Eastern Equine Encephalitis (EEE)

2022 US Case Count: No reporting available

While rare, Eastern Equine Encephalitis (EEE) is a mosquito-borne disease that can affect both humans and some animals. While it is propagated between birds and the mosquito species Culiseta melanura, it is spread to humans and animals by species in the Aedes, Coquillettidia, and Culex genera that feed on infected birds and then mammals.

As its name suggests, horses are especially susceptible to the disease. Other animals that can become infected with EEE virus (EEEv) include pigs, rodents, and certain species of deer. Scientists believe that humans who contract and recover from EEEv have lifelong immunity against re-infection.

Approximately 4 – 5% of human EEEv infections lead to contracting Eastern Equine Encephalitis (EEE), which results in swelling of the brain. EEE has a very high mortality rate, with about one-third of those infected succumbing to the disease.

From 2011 – 2020, only 110 human cases of EEEv have been reported in the United States. In 2019, several outbreaks sparked concern and resulted in 38 human cases and 19 deaths, the highest number of deaths reported in a single year from the disease.

As the map below illustrates, these EEEv infections occurred primarily on the East Coast of the U.S., with high concentrations in New England, the Southeastern U.S., and the state of Michigan.

EEEv infections in the U.S. by state, 2011 – 2020

eeev-infections-us-by state-2011-2020

The CDC has not reported on EEEv infections since 2020. However, the U.S. Department of Agriculture’s Animal and Plant Health Inspection Service (APHIS) reported 110 animal cases in 2021. No data is available yet for 2022.

Learn more about EEE and EEEv on VDCI’s Eastern Equine Encephalitis resource page.

Chikungunya virus

2022 U.S. Case Count: 47 human cases (travel acquired)

Chikungunya virus was rarely discussed in the United States prior to 2006, but as global travel increased and climate shifts have occurred, more U.S. citizens have had experiences with Chikungunya in recent years. It is prevalent in the Caribbean, and while most cases remain travel-acquired, documented local transmission first occurred in 2013. Since 2015, Chikungunya has been a reportable illness in the U.S., which means that health officials are required to report any cases.

Spread to humans via the bite of an infected Aedes genus mosquito, particularly Aedes aegptyi or Aedes albopictus, Chikungunya virus infection can leave those infected with symptoms such as fever, joint pain and swelling, muscle aches, headaches, and more; joint pains are one of the most prominent symptoms and can last for months after the virus subsides. Fatalities are rare.

The CDC has not updated its Chikungunya reporting site since 2020, however, through the agency’s National Arbovirus Surveillance System ArboNet website, VDCI notes that 47 cases of the disease were reported by states in 2022. All of these cases were travel acquired. These cases were reported in 21 states, as reflected in the table below.

U.S. states reporting travel-acquired Chikungunya virus cases in 2022

State

Case Count

California

4

Colorado

3

Illinois

8

Iowa

3

Kansas

1

Kentucky

1

Louisiana

1

Massachusetts

2

Minnesota

1

New Hampshire

1

New Jersey

1

New Mexico

1

New York

5

North Carolina

3

Ohio

2

Pennsylvania

2

Tennessee

2

Utah

1

Vermont

1

Virginia

3

Washington

1

In 2021, there were 21 reported travel-acquired cases, so 2022 reflects a 123% increase in overall case counts over the previous year. As with the increase in Dengue, this may reflect a more global trend that is the result of a return to travel post-pandemic.

You can learn more about Chikungunya virus, its history, and its symptoms on VDCI’s resource page.

Zika Virus

2022 U.S. Case Count: 3 human cases (travel acquired)

Like Chikungunya virus, Zika virus has only recently become a significant concern in the United States. But, after significant tropical outbreaks in 2015 and 2016, locally acquired cases were reported in southern states such as Florida and Texas with much media attention, putting the disease on the map in the U.S. with health authorities and the public at large alike.

While Zika virus is spread primarily through the bite of infected Aedes genus mosquitoes, especially Aedes aegypti and Aedes albopictus that are found prevalently in the U.S., it can also be spread through sexual activity, which means that someone does not need to be bitten by a mosquito to be infected. This disease carries special risks for pregnant people who become infected. Zika virus can be passed to a fetus by the mother and result in birth defects and abnormalities.

In 2022, the CDC’s ArboNet system had no reports of locally transmitted Zika virus, but 3 travel-acquired cases were reported in the states listed below. This is a slight decrease from 2021 when 4 cases were reported.

U.S. states reporting travel-acquired Zika virus cases in 2022

State

Case Count

Illinois

1

Kentucky

1

New York

1

zika-virus-travel-usa-map-2022-state

While these case counts are low, there is no way to predict when the U.S. could see a spike in activity like it did in 2015 and 2016. It is important for community leaders to help citizens understand the risks associated with Zika virus and to report any Zika symptoms to their doctors, especially if they or someone they are close with has recently traveled to an area where Zika virus is prevalent. It is also critical that individuals understand the risks and take action to protect themselves, especially while traveling.

Find out more about Zika virus, symptoms, and mosquito-bite protection on VDCI’s vector-borne disease resource website.

Other vector-borne diseases of concern

While this year-in-review focuses on 6 major mosquito-borne diseases, there are others that remain a source of concern in the U.S., including malaria, St. Louis Encelphalitis and Jamestown Canyon virus. And let’s not forget heartworm, which is spread by infected mosquitoes to our beloved pets.

There are also other vector-borne diseases, which encompass viruses and illnesses spread by other pests, such as rodents, ticks, and fleas. These include some common conditions that most people are familiar with, such as Lyme disease, and lesser-known diseases such as hantavirus, plague, Rocky Mountain Spotted fever, Powassan virus, and more.

Protecting your community from mosquitoes

 

Whether you are responsible for mosquito programs in your community or concerned about mosquito activity on your business property, having an in-depth knowledge of integrated mosquito management programs is critical to protecting those under your care from mosquito-borne disease.

VDCI is committed to mosquito surveillance and disease monitoring, developing robust integrated mosquito management programs for our clients, and educating the public on measures to protect themselves from vector-borne diseases. We also offer emergency response and drone and aerial application services to assist communities in preventing disease, especially following major weather events such as hurricanes and flooding.

If we can assist you or your community in mosquito prevention, please connect with us online or call (866) 977-6964.

*Results reported to U.S. Centers for Disease Control and Prevention as of January 12, 2023.

The key to limiting the spread of mosquito-borne diseases is monitoring and prevention. Municipalities and mosquito abatement districts often execute Integrated Mosquito Management (IMM) programs to help protect communities, but private citizens can support these efforts and empower themselves with disease tracking tools like the CDC’s ArboNet map. The map provides a live overview of reported mosquito activity and the most common vector-borne diseases, including:

  • West Nile Virus (WNV)
  • St. Louis Encephalitis (SLE)
  • Eastern Equine Encephalitis (EEE)
  • La Crosse (LAC)
  • Dengue (DEN) locally-acquired and travel-associated
  • Chikungunya (CHIK) locally-acquired and travel-associated
  • Zika Virus (ZIKA) locally-acquired and travel-associated

*ArboNet is designed to reflect real-time information, but there are times when it may not be in sync. This resource is easy to navigate and can be sorted by disease type, state, and year.

Public Education in Reducing Mosquito Populations 2 bugspray mosquito prevention health and safetyIn addition to staying informed about the risks posed by mosquitoes in your community, it’s important to observe any travel warnings issued by the CDC, particularly when pregnant. It’s also essential to exercise personal protection measures like wearing insect repellent and exercising best practices around your property to reduce mosquito reproduction.

VDCI is committed to public education and spreading awareness throughout the U.S. about the dangers of mosquito-borne diseases and their preventability, with the overarching goal of reducing illness and fatalities. Our dedicated and experienced team works tirelessly with local governments to prevent the spread of mosquito-borne diseases in all of the contracts we service from coast to coast.

VDCI Wants To Make Your Community Safer. How Can We Help?

Speak to an expert about implementing an IMM program.

Fill out the information below, and one of our experts will follow up with you shortly.

VDCI_Logo_squareSince 1992, Vector Disease Control International (VDCI) has taken pride in providing municipalities, mosquito abatement districts, industrial sites, planned communities, homeowners associations, and golf courses with the tools they need to run effective mosquito control programs. We are determined to protect the public health of the communities in which we operate. Our mosquito control professionals have over 100 years of combined experience in the field of public health, specifically vector disease control. We strive to provide the most effective and scientifically sound mosquito surveillance and control programs possible based on an Integrated Mosquito Management approach recommended by the American Mosquito Control Association (AMCA) and Centers for Disease Control and Prevention (CDC). VDCI is the only company in the country that can manage all aspects of an integrated mosquito management program, from surveillance to disease testing to aerial application in emergency situations.

Are Mosquitoes Harmful to Dogs and Horses? Yes! Here’s How You Can Protect Them…

Heartworm Prevention and Dogs

Most of us know the dangers mosquitoes pose to humans across the globe, but it’s easy to forget about the toll vector-borne diseases can take on pets, particularly dogs and horses. Taking preventative measures to protect these animals is crucial. It’s also important to know and recognize the symptoms of infection to help ensure these animals receive swift care if they do contract a mosquito-borne disease – and understanding how threatening diseases spread can help break the cycle of disease transmission.

Heartworms

heartworm fact iconIf you’re a dog owner, your vet has likely warned you about Dirofilaria immitis, better known as heartworms. More than 250,000 dogs are diagnosed annually. After biting an infected animal, Aedes, Anopheles, and Mansonia mosquitoes can transmit this parasitic roundworm to many other species, including cats, foxes, raccoons, and wolves, but dogs are the natural host. As they mature over approximately 7 months, heartworms may grow up to 12 inches and survive for several years within a dog’s circulatory system.

Symptoms of Heartworm Disease in Dogs:

  • Persistent cough
  • Decreased appetite
  • Weight loss
  • Stunted growth
  • Fatigue
  • Anemia
  • Fainting

Treatment of Heartworm Disease in Dogs

VDCI_Mosquito_Emerg_Response_Guide_Page_08Without proper treatment, most dogs will die from heartworm disease which is why it’s important to monitor your dog and seek medical guidance if your dog is experiencing any of the symptoms associated with heartworms. Luckily, treatment is typically successful and prescription medicine can be used to prevent the development of heartworms should a dog be bitten by an infected mosquito. There are also FDA-approved products to prevent heartworms in dogs. Depending on the severity and stage of the disease, surgical removal may be necessary.

Eastern Equine Encephalitis (EEE) Virus

Though mosquitoes are most known for infecting dogs with heartworms, which cannot be spread to humans, dogs can also contract other viruses like Eastern Equine Encephalitis (EEE), sometimes referred to as sleeping sickness. However, horses and other equids are the natural host of EEE. Culiseta melanura mosquitoes are the primary vector of this virus, but Coquillettidia pertubans, Aedes sollicitans, and Ochlerotatus canadensis may also contribute to the spread. This virus attacks and inflames the central nervous system (brain and spinal cord) of its host and is often fatal.

Symptoms of EEE in Horses:

  • Fever
  • Lack of appetite
  • Muscle weakness
  • Disorientation
  • Blindness
  • Seizures
  • Paralysis

Treatment of EEE in Horses

EEE Prevention for HorsesIn 80-90% of EEE cases, the infection is fatal, and horses may die within a few days. Luckily, vaccinations are available to protect horses from infection. While rare, EEE can also be contracted by humans. Treatment can be effective for less severe infections, but even with treatment, the disease is fatal in approximately 30% of cases.

Heartworms and EEE are more commonly found in warmer, wetter climates, but can be contracted nearly anywhere in the country. While it’s crucial to keep animals up-to-date on their vaccinations and preventative medicine no matter where they are located, it’s equally important to understand how to protect ourselves from mosquito bites and mosquito-borne diseases:.

To help prevent mosquito bites, remember the 4 “Ds”

1. DEFEND

Consistently wear and reapply an EPA-approved repellent when outdoors

  • The safest and most effective repellents should contain one of the following active ingredients:
    • DEET
    • Picaridin (known as KBR 3023 and icaridin outside the US)
    • IR3535
    • Oil of lemon eucalyptus (OLE)
    • Para-menthane-diol (PMD)
    • 2-undecanone
  • Always follow manufacturer guidelines found on the label to ensure safe and optimal product use.
  • Review the EPA’s list of registered insect repellents – www.epa.gov/insect-repellents/find-repellent-right-you
  • Keep pets up to date on vaccinations and use preventative medications.

2. DRESS

Wear closed-toe shoes, light colors, and long sleeves and pants to keep your skin protected.

  • Mosquitoes are more attracted to darker clothing.
    Comfortable, loose-fitting clothes are more effective at preventing mosquito bites.
  • Bare skin on your hands, ankles, face, neck, or other areas should be protected with mosquito repellent.

3. DRAIN

Mosquitoes require standing water to complete their life cycle.

  • Empty and prevent future water collection in outdoor tools and objects like tires, tarps, buckets, birdbaths, basketball goals, wheelbarrows, and lawn care equipment.
  • Ensure water can drain properly from gutters, flower pots, watering cans, rain barrels, low-lying ditches, and stormwater pipes and structures.

4. DUSK & DAWN

Limit spending time outdoors when mosquitoes are most active.

  • Mosquitoes can become dehydrated in direct sunlight.
  • During the day, most mosquito species prefer cool, shaded places like thick weeds, ivy, bushes, and wood piles.

Self-protection – and the protection of your pets – is an essential part of an integrated mosquito management approach that incorporates public education, partnership with local community leaders and organizations, professional surveillance, monitoring, disease testing, and the use of pesticides when pre-determined action thresholds have been met. At VDCI, we are dedicated to driving the mosquito management industry forward through technological advancement and setting new standards for safety and efficiency, so people and animals can safely enjoy the outdoors.

Contact Us to Learn More About Effective Mosquito Prevention Strategies

VDCI_Logo_square Since 1992, Vector Disease Control International (VDCI) has taken pride in providing municipalities, mosquito abatement districts, industrial sites, planned communities, homeowners associations, and golf courses with the tools they need to run effective mosquito control programs. We are determined to protect the public health of the communities in which we operate. Our mosquito control professionals have over 100 years of combined experience in the field of public health, specifically vector disease control. We strive to provide the most effective and scientifically sound mosquito surveillance and control programs possible based on an Integrated Mosquito Management approach recommended by the American Mosquito Control Association (AMCA) and Centers for Disease Control and Prevention (CDC). VDCI is the only company in the country that can manage all aspects of an integrated mosquito management program, from surveillance to disease testing to aerial application in emergency situations.

Public Education Programs for Mosquito Control in the United States 1982 to the Present

PublicEducation_OH

by Broox Boze Ph.D., VDCI Director of Technical Services

Published in Wing Beats, Florida Mosquito Control Association

In 1979 the American Mosquito Control Association (AMCA) adopted a policy statement indicating that “methods for mosquito control should be chosen after careful consideration of the efficacy, ecological effects, and costs versus benefits of the various options, including public education, legal action, natural and biological control, elimination of breeding sources, and insecticide application.” Within a few years, a membership survey was conducted to analyze public education programs implemented by our members and found that 60% of respondents rated public education as “more important” than or “equally important” as chemical, biological, or physical control.”  However, survey respondents reported that only 1.7% of their budget was allocated for public education and an average of 30% was allocated for chemical, biological, and physical control (Beams, 1985).

AMCA’s general membership survey, conducted in 2020, indicated that a “lack of public understanding or support of mosquito control” was identified as the number one element having an impact on our profession in the next three years. “Increasing and improving public outreach” was also listed as our membership’s number one priority (Association Laboratories, 2020).

AMCA survey participantsTo examine the state of current public education programs within mosquito control agencies across the United States, we modified Beams 1985 survey and distributed it to 178 agencies across 38 states. Participants were selected for inclusion based on criteria established in the original design (Beams, 1985): inclusion of all geographic regions, and listing in the American Mosquito Control’s Directory of Mosquito Control Agencies (Challet and Keller, 1981). A total of 133 agencies completed the survey (74.7% response rate) with a relatively equal distribution across regions (Figure 1) and agency size across time (Figure 2).

AMCA survey participants

The survey results support an increased focus on public education within mosquito control and note a 10% increase in the number of agencies ranking public education as “more important” or “equally important” than chemical, biological or physical control (Figure 3) in addition to documenting a 300% increase in budget allocation from 1.7% to 5.19% of total operating expenses.

Despite the increased emphasis on public education as a leading component of Integrated Mosquito Management (IMM) there was little to no change in the number of agencies that make mosquito/vector control information (brochures, leaflets, pamphlets) available to the public (86% in 1982, 85% in 2022), the number of agencies making educational presentations available to the community (85% in 1982, 88% in 2022), or the use of press releases to local new agencies (83% in 1982, 86.5% in 2022).  There was also a decrease in agencies offering facility tours to the public (71% in 1982, 58% in 2022) and regular coverage of agency activities on local news sources (45% in 1982, 38% in 2022).  There has been no change in the number of districts that rank their public education programs as either excellent or good (34% in 1982, 34.5% in 2022) when presented with the following options: excellent, good, fair, poor, variable, and no opinion.

staff responsibility mosquito control public educationOne of the biggest changes identified with public education programs is the organizational level at which responsibilities principally fall (Figure 4). Forty-seven percent of agencies report that their manager/director is primarily responsible for educational activities within their jurisdiction, down from 53% in 1982.  Despite the small change in responsibility for managers/directors, the number of agencies relying on biologists/entomologists for educational outreach decreased from 34% in 1982 to only 9% in 2022. The number of agencies with a specialist focused primarily on education increased from only 8% in 1982 to 34% in 2022, which suggests an increased understanding of the unique skills needed for educational outreach and public relations.

 The agencies surveyed in this study are public, tax-supported organizations with limited funds and the responsibility for protecting public health through management of mosquitoes in a fiscally responsible way. As a data-driven industry, the use of chemical pesticides to control mosquitoes gives rapid, noticeable, and quantifiable results that can be documented with standardized surveillance strategies.  As both the staff and budget allocated toward public education activities continues to increase, we should consider assessment strategies to document their efficacy and usefulness within the IMM framework.  Current strategies for gauging the success of public education activities include measuring the number of people reached via social media (clicks/likes/shares) and the number of outreach events held. However, surveillance data (trap counts/landing rates/service requests), public acceptance, behavioral change (container/house/breteau index), and learning/knowledge evaluations should also be a part of gauging success like the other components of IMM.  Unfortunately, the majority of mosquito control agencies are not using these measurable tools to document the success of their efforts (Figure 5) and only a small fraction of our community is utilizing surveillance-based data or behavioral change to document their public outreach impacts on protecting public health.  
 
agencies using public education assessment tools

As AMCA works to build a national campaign and reduce the lack of understanding regarding mosquito control, we must remember that Integrated Mosquito Management involves careful consideration of the efficacy, ecological effects, and costs versus benefits of the various options, including public education, legal action, natural and biological control, elimination of breeding sources, and insecticide application. While most respondents (98.2%) focus on personal protective measures (including the use of repellent, avoiding certain times of day, and dressing appropriately), the focus on the other pieces of IMM which are essential to scientifically sound operations is markedly lower. Only 40.6% of agencies put any effort into highlighting surveillance data, 66.1% focus on disease activity and 56.3% focus on larval control suggesting that our industry has room for improvement when it comes to communicating with the public. Wide area applications for controlling adult mosquitoes continue to be scrutinized and it is not surprising to see that only 30.8% of agencies focus on the science behind these intervention strategies.  Less than 25% of respondents spend any time discussing environmental impact, insecticide resistance, biocontrol, or new technologies (Figure 6) which help to ensure the safe and effective use of our limited tools.

components of IMM agency focus

Both CDC and EPA acknowledge chemical control as a component of IMM and necessary tool for reducing the risk of transmission when pathogens are found in adult mosquitoes (Connelly et al., 2020). In areas where sheer number of mosquitoes create quality of life issues, adult mosquito control is not only required, but desired by the public. However, AMCA members often shy away from discussing this important component of IMM due to concerns of backlash from non-governmental organizations and/or anti-pesticide advocacy groups. The best way to counter these concerns is to demonstrate the solid science behind the use of these technologies. Failure to do so allows special interest groups to tell, and frame, the story in a way that may not acknowledge the science behind our efforts and causes a disservice to public health.

Mosquito Control public outreach should discuss ALL of the components of IMM, and the AMCA Public Relations Committee looks forward to developing messages to make this happen.

Contact Us to Learn More About Mosquito Management Public Education

VDCI_Logo_squareSince 1992, Vector Disease Control International (VDCI) has taken pride in providing municipalities, mosquito abatement districts, industrial sites, planned communities, homeowners associations, and golf courses with the tools they need to run effective mosquito control programs. We are determined to protect the public health of the communities in which we operate. Our mosquito control professionals have over 100 years of combined experience in the field of public health, specifically vector disease control. We strive to provide the most effective and scientifically sound mosquito surveillance and control programs possible based on an Integrated Mosquito Management approach recommended by the American Mosquito Control Association (AMCA) and Centers for Disease Control and Prevention (CDC). VDCI is the only company in the country that can manage all aspects of an integrated mosquito management program, from surveillance to disease testing to aerial application in emergency situations.

The 4Ds: How Your Community Can Help Prevent Mosquito Breeding and Bites

The 4Ds: How Your Community Can Help Prevent Mosquito Breeding and Bites

It’s common to spend time in nature to relax and reset, but silent threats like mosquitoes can make this difficult and even dangerous. One of the reasons mosquitoes so often plague our outdoor activities is because they are highly efficient at reproducing. Anywhere water collects—from a stagnant pond to a tiny puddle in the sidewalk—can become an active breeding ground for mosquitoes. Therefore, community members play a vital role in the elimination of standing water, as well as the protection of themselves and their families from vector-borne pathogens

The best way to protect yourself when spending time outdoors is to remember the 4Ds. Watch the video below to learn how to learn about personal protection and property maintenance tips:

The 4Ds: Protect Yourself from Dangerous Mosquitoes

1. DEFEND

Consistently wear and reapply an EPA-approved repellent when outdoors

  • The safest and most effective repellents should contain 10-30% DEET (N,N Diethyl-meta-toluamide). 
  • Always follow manufacturer guidelines found on the label to ensure safe and optimal product use.
  • Review the EPA’s list of registered insect repellents – www.epa.gov/insect-repellents/find-repellent-right-you   
  • Keep dogs and cats safe, too, with preventative heartworm medication.

2. DRESS

Wear closed-toe shoes, light colors, and long sleeves and pants to keep your skin protected. 

  • Mosquitoes are more attracted to darker clothing. 
  • Comfortable, loose-fitting clothes are more effective at preventing mosquito bites.
  • Bare skin on your hands, ankles, face, neck, or other areas should be protected with mosquito repellent.

3. DRAIN

Mosquitoes require standing water to reproduce. 

  • Empty and prevent future water collection in outdoor tools and objects like tires, tarps, buckets, birdbaths, basketball goals, wheelbarrows, and lawn care equipment.
  • Ensure water can drain properly from gutters, flower pots, watering cans, rain barrels, low-lying ditches, and stormwater pipes and structures.

4. DUSK & DAWN

Limit spending time outdoors when mosquitoes are most active. 

  • Mosquitoes can become dehydrated in direct sunlight. 
  • During the day, mosquitoes typically linger in cool, shaded places like thick weeds, ivy, bushes, and wood piles.

Self-protection goes hand-in-hand with public education. Integrated Mosquito Management (IMM) programs are most effective when efforts are reinforced by the surrounding community. When state, regional, and municipal entities partner with a professional management company, they get access to industry experts who regularly present and work with health departments, churches, schools, libraries, senior homes, local clubs, and other groups to ensure they receive accurate information about the mosquito species, diseases, and tools used in the area. Educational resources can be disseminated through a variety of channels to inform citizens about up-to-date news, safety warnings, and mosquito prevention reminders. 

It’s important to remember that mosquitoes are not hindered by geographical boundaries. In fact, some species can travel many miles for a blood meal. When knowledgeable citizens work together, they can have a significant impact that benefits the entire community and help maximize the results of their local integrated mosquito management program.

Contact Our Experts​

Fill out the form below or call our experts at 866.977.6964 so that they can help you develop a custom IMM program to meet your community’s needs.

VDCI_Logo_squareSince 1992, Vector Disease Control International (VDCI) has taken pride in providing municipalities, mosquito abatement districts, industrial sites, planned communities, homeowners associations, and golf courses with the tools they need to run effective mosquito control programs. We are determined to protect the public health of the communities in which we operate. Our mosquito control professionals have over 100 years of combined experience in the field of public health, specifically vector disease control. We strive to provide the most effective and scientifically sound mosquito surveillance and control programs possible based on an Integrated Mosquito Management approach recommended by the American Mosquito Control Association (AMCA) and Centers for Disease Control and Prevention (CDC). VDCI is the only company in the country that can manage all aspects of an integrated mosquito management program, from surveillance to disease testing to aerial application in emergency situations.

Behind the Scenes Look: Utilizing Technology for Successful Surveillance & Disease Testing

VDCI lab testing vial mosquito control education

Behind the Scenes Look: Utilizing Technology for Successful Surveillance & Disease Testing

Responsible mosquito management involves targeting mosquitoes at all stages of their lifecycle. A holistic, integrated approach is the most effective strategy to halt population growth and prevent the spread of deadly diseases while reducing environmental footprint.

surveillance and disease testing

Surveillance is the cornerstone of an integrated mosquito management (IMM) program. This begins with assessing breeding sites and eliminating mosquitoes at the larval stage. By analyzing population dynamics and species distribution, adult mosquitoes can be safely and effectively controlled. Proactive surveillance and data collection also allow scientists to optimize the use of insecticides and limit spraying to specific areas at precise times. These techniques reduce the chance of insecticide resistance, which can create additional challenges and expenses for stakeholders.

mosquito lab testing collecting dataHighly targeted, carefully formulated insecticides are used by experts to safely control mosquitoes and mitigate the risk of vector-borne disease transmission. Though insecticides are an impactful tool in mosquito management, it’s possible for mosquitoes to become resistant to them. According to the Centers for Disease Control and Prevention (CDC) if mortality drops to a rate of less than 90%, the mosquito population is considered insecticide resistant.

Insecticide resistance typically occurs during prolonged exposure to insecticides used during the management process. Continued use in moderately susceptible populations can result in the selection of resistant individuals and loss of insecticide sensitivity in certain areas—something that is particularly dangerous during large mosquito outbreaks following rainstorms, hurricanes, and other serious weather events. Insecticide resistance not only contributes to wasted time and resources but it also endangers communities through increased disease transmission.

mosquito lab testingThe best way to prevent insecticide resistance is ongoing monitoring. IMM programs incorporate strategic monitoring efforts throughout the management season to gather information about species bionomics, active periods, host preferences, and the presence of disease. This knowledge about local mosquito populations is used to determine the severity of a nuisance outbreak and inform control efforts. 

Scientists have multiple ways to collect information. Each method is selected based on the unique challenges a community is facing.

mosquito trapsCDC Light Traps

These light traps, which were developed by the Center for Disease Control and Prevention, are considered the industry standard for mosquito surveillance and collection. Like the New Jersey light trap, it attracts many different species, but it is portable. A 6V battery powers a motorized fan that circulates carbon dioxide (CO2) as an attractant. Once they enter the trap, mosquitoes are sucked into a collection device. CDC traps are most effective when deployed at dawn and dusk when mosquitoes are most active.

mosquito trapsBG-Sentinel Trap

This trap is designed to capture Aedes albopictus (Asian Tiger mosquito) and Aedes aegypti (Yellow Fever mosquito), each of which are known to carry diseases, including Dengue, Chikungunya, Zika virus, and Yellow Fever. Both species thrive in urban environments where they can breed in natural and artificial containers such as gutters, bird baths, watering cans, and outdoor equipment. The BG-Sentinel trap, which is made of a tarp-like material, utilizes an attractant to lure mosquitoes into a funnel. The funnel is outfitted with an electric fan that pulls them into a net where they will remain until collection.

mosquito trapsGravid Trap

Gravid traps are designed to catch Culex mosquitoes, such as Culex tarsalis or Culex pipiens. These species are capable of spreading West Nile virus, St. Louis Encephalitis, and both Western and Eastern Equine Encephalitis. Each trap is filled with stagnant water containing organic matter like grass or hay to mimic natural breeding grounds. As Culex mosquitoes approach, they are sucked by an electric fan into the trap for future collection.

mosquito trapsNew Jersey Light Trap

The New Jersey light trap is effective at capturing a wide spectrum of mosquito species. It is typically used as a permanent device that’s mounted and powered by an outlet in target areas. The New Jersey light trap is a beneficial tool to support IMM programs—it is capable of collecting large quantities of local mosquitoes for scientific analysis and data collection. 

PCR Tests 

Clinical tests are commonly used in the industry to identify diseases. PCR tests, for example, allow laboratory technicians to detect different bacteria or viruses that have been transmitted by mosquitoes. Though PCR tests are also used to detect Covid-19, it’s important to note that mosquitoes do not spread the SARS-CoV-2 virus.

RAMP® WNv Tests

RAMP tests are also widely used in the industry. This highly-sensitive test is designed to detect West Nile virus in mosquitoes. A RAMP test can be conducted quickly and efficiently in-house, making it particularly useful following hurricanes and weather events.

lab testing

CDC Bottle Bioassay

One of the most important tools when monitoring for insecticide resistance is the CDC Bottle Bioassay. As part of the testing process, bottles are coated with a diluted pesticide solution and then paired with a control group. Female adult mosquitoes are deposited into each bottle, where they are exposed to stressful conditions. Mortality data is then collected and analyzed by scientists for evidence of insecticide resistance. 

Larval Cup Bioassay

Larvicides are central to proactive mosquito management programs, and resistance is less common; however, it can still occur. Larval control agents work through either ingestion or contact with the target host, depending on the product used. Like the bottle bioassay process, cups are coated with bacterial larvicides like Bacillus thuringiensis israliensis (Bti), Bacillus sphaericus (Bs), or Spinosad and examined for mortality data. 

insecticide resistance - bottle assay

Modern GPS/GIS technologies have made it possible to gather large amounts of data for site mapping, disease tracking, and analysis. This information can be compared over time to identify trends or patterns that help advise the direction of management programs and ensure ongoing compliance with regulatory standards. 

Now, GPS technologies are being integrated into advanced aerial equipment. VDCI’s state of the art drones give technicians a birds-eye-view of target sites for more streamlined site surveillance and mapping, as well as more precise pesticide applications. Likewise, advanced drones allow experts to observe and treat areas that are dangerous, like swamps and wetlands, or more private, like HOAs and other large communities.

drone surveillance

Scientists have many advanced tools at their disposal for trapping, species identification, and disease testing, but the most valuable approach is preventative management. Proactive surveillance, monitoring, communication, and stakeholder education can help experts identify and quickly mitigate disease risks before a community is impacted. VDCI has the experience, necessary equipment, industry-leading technologies, and capabilities to handle all of your mosquito surveillance and disease monitoring needs.

Contact Our Experts​

Contact, or call, our experts at 866.977.6964 so that they can help you develop a custom IMM program to meet your community’s needs.

VDCI_Logo_squareSince 1992, Vector Disease Control International (VDCI) has taken pride in providing municipalities, mosquito abatement districts, industrial sites, planned communities, homeowners associations, and golf courses with the tools they need to run effective mosquito control programs. We are determined to protect the public health of the communities in which we operate. Our mosquito control professionals have over 100 years of combined experience in the field of public health, specifically vector disease control. We strive to provide the most effective and scientifically sound mosquito surveillance and control programs possible based on an Integrated Mosquito Management approach recommended by the American Mosquito Control Association (AMCA) and Centers for Disease Control and Prevention (CDC). VDCI is the only company in the country that can manage all aspects of an integrated mosquito management program, from surveillance to disease testing to aerial application in emergency situations.

The IMM Advantage

CDC Mosquito control disease monitoring

The IMM Advantage

Mosquito — the eight-letter word that no one likes to hear or, even worse, be around. Community members can rely on several strategies to limit their itchy bites and thwart the pests – from insect repellents to reducing breeding habitats. However, these approaches alone will not produce lasting results or provide insights into the threat level that mosquito-borne diseases pose in your community. The safest, most effective, and long-lasting solution is prevention through a proactive and holistic Integrated Mosquito Management (IMM) program, which targets mosquitoes at all stages of their life cycle, giving your community peace of mind.

surveillance and disease testing - lab testing - mosquito control - vdci - vector management - markets served

A successful IMM program leans on both science-based tactics and educational initiatives:

CDC Mosquito control disease monitoringSurveillance & Disease Testing

Surveillance involves close observation and analysis of mosquito populations, distribution, density, and species composition throughout a targeted area. By gathering extensive data, scientists can create a customized management approach that’s designed to target mosquitoes in the right areas, at the right times, with the right product. This optimizes product use and most effectively reduces the risk of vector-borne disease.

Mosquito management strategies vary depending on their lifecycle stage. For example, mosquitoes require water to lay their eggs, and larval surveillance data allow experts to identify these habitats and treat them using biological control or EPA-registered larvicides.

The management of adult mosquitoes can be more complex. When it comes to adult mosquito surveillance, experts often utilize mosquito traps to collect, count, and identify mosquito species and determine the particular disease risk in a given area. Each mosquito species has unique host preferences, activity times, and habitat use. Certain species are also more likely to carry and transmit pathogens. Correctly identifying species and understanding their bionomics helps ensure they are managed most effectively. 

insecticide resistanceMonitoring for Insecticide Resistance

An important component of IMM programs is insecticide resistance. Monitoring for chemical resistance should begin at the start of the season and continue throughout the season. Long-term resistance data is valuable because it allows experts to identify trends and modify their mosquito management approach as needed. 

Insecticide resistance most often occurs due to overuse or overreliance on a single class of products. The continued use may reduce population sensitivity and eventually cause selection for resistant insects. Irresponsible product use by homeowners and agriculture can undermine mosquito control efforts, waste funds and resources, and increase the risk of an unmanageable disease crisis. The 2016 Zika outbreak in Miami-Dade County after Hurricane Irma illustrated the reality and danger of insecticide resistance.

Technologies Utilized in Mosquito Control

Ground Crews

Vector-control specialists rely on many types of tools and technologies to achieve mosquito control. Ground crews utilize backpack power sprayers or Ultra-Low Volume (ULV) spray trucks capable of treating highly specific areas. Equipment is specially designed and calibrated for optimal product distribution, with all data recorded in VDCI’s proprietary database. 

vdci spraying mosquito control treatment

Aerial Fleet

Aircraft can be used to treat habitats that are difficult to access due to flooding, compromised infrastructure, or road closures. VDCI’s aerial fleet utilizes highly specialized technology and incorporates real-time meteorological data to determine optimal application efficacy.  

In addition to specialized aircraft, VDCI also utilizes state-of-the-art drones (unmanned aerial systems) that are programmed with advanced GPS technology to map target sites and ensure the precise application of liquid or granular products. Drones bridge the gap between ground and plane applications and allow for wide-area coverage of previously unreachable terrain.

drone applications for mosquito control

Public Education

Mosquito management initiatives backed by science and modern technologies can be highly effective, but a lack of public awareness can ultimately limit the success of these efforts. The role of public education in an IMM program cannot be overlooked. Not only will informed citizens better protect themselves from vector-borne diseases, but they can also assist in removing mosquito habitats and reporting areas of concern.

Public-Education-Source-Reduction-Larval-Habitats

Public education starts with establishing strategic partnerships within the community. VDCI partners with health departments, schools, churches, and other community groups to share accurate information and strategies to support city and state governments or mosquito abatement districts. Community members are taught to remember the 4 D’s:

  • Defend – Protect yourself by using an EPA-approved repellent.
  • Dress – Wear light-colored clothing, closed-toe shoes, long sleeves, and long pants when spending time outside.
  • Drain – Mosquitoes need water to complete their life cycle, and even something as small as a bottle cap can hold dozens of mosquito larvae.
  • Dusk & Dawn – Stay indoors during these times of day when mosquitoes are most active. 

There is no one solution to control mosquitoes. IMM programs are complex, customized, and ever-changing. Success is best achieved by merging surveillance and monitoring efforts with advanced knowledge and technology. And the better the community understands its role in that equation, the more favorable the outcome can be.

Contact Our Experts

Contact, or call, our experts at 866.977.6964 so that they can help you develop a custom IMM program to meet your community’s needs.

VDCI_Logo_squareSince 1992, Vector Disease Control International (VDCI) has taken pride in providing municipalities, mosquito abatement districts, industrial sites, planned communities, homeowners associations, and golf courses with the tools they need to run effective mosquito control programs. We are determined to protect the public health of the communities in which we operate. Our mosquito control professionals have over 100 years of combined experience in the field of public health, specifically vector disease control. We strive to provide the most effective and scientifically sound mosquito surveillance and control programs possible based on an Integrated Mosquito Management approach recommended by the American Mosquito Control Association (AMCA) and Centers for Disease Control and Prevention (CDC). VDCI is the only company in the country that can manage all aspects of an integrated mosquito management program, from surveillance to disease testing to aerial application in emergency situations.

2021 Mosquito-Borne Disease Year In Review

West-Nile-Virus-UK-spread-Europe-outbreak-1001738

2021 Mosquito-Borne Disease: Year In Review

While the COVID-19 pandemic has captured the attention of the world’s leading infectious disease experts, the scientific community has continued to track the transmission of mosquito-borne diseases, including West Nile, Zika, Chikungunya, Dengue, and other dangerous illnesses. As of December 14, 2021, the Center for Disease Control (CDC) reports that more than 2,400 human infections of West Nile occurred in the United States in the past year, of which 165 resulted in death. Nearly every state in the country has been affected, with  Arizona, Colorado, California, and Nebraska representing the most cases.

West Nile Virus

CDC WNV 11.30.21 This map from CDC shows West Nile virus activity across the U.S. in 2021.

As in years past, West Nile virus (WNv) continues to be the most reported and most deadly mosquito-borne disease in the United States. WNv is carried by over 150 species of mosquitoes, which usually pass the virus to humans after feeding on infected birds. Scientists have identified Culex pipiens, Culex tarsalis, and Culex quinquefasciatus as the primary vector species.

Approximately 20% of people infected with WNv experience flu-like symptoms such as nausea, headache, muscle pain, fever, and swollen lymph glands. These symptoms may also be accompanied by rashes, sleepiness, disorientation, and stiff neck. Among those infected, less than 1% will go on to develop West Nile Encephalitis or Meningitis. This can result in tremors, convulsions, paralysis, coma, and even death.

WNv transmission is cyclical in nature, with 2021 data showing a significant increase in both total cases and death:

2021: Cases
2,445 Cases
2021: Deaths
165 Deaths

This chart reflects data taken on December 14, 2021.

2020 – 28 cases in citizens returning from travel, 0 cases in U.S. territories 

2019 – 192 cases in citizens returning from travel, 2 cases in U.S. territories 

2018 – 116 cases in citizens returning from travel, 8 cases in U.S. territories 

To learn more about the symptoms, treatment, and mosquito species that vector this virus, visit our educational page on West Nile virus.

Zika Virus

CDC ZikaThis map from CDC shows Zika virus activity around the world.

Zika is a dangerous virus that primarily affects Africa and South America. Historically, U.S. citizens have become infected while traveling abroad, but warming climates have allowed the presence of Zika in the southern United States as well. Unlike other types of viruses, which require an animal reservoir host, mosquitoes are able to transmit Zika by simply feeding on the blood of an infected person. This can increase the spread very quickly during the summer months. 

In the United States, Zika is typically transmitted by Aedes aegypti, but growing evidence suggests that the Asian Tiger Mosquito (Aedes albopictus) could also be a vector. Common symptoms of infection include fever, rash, headache, joint pain, muscle pain, and Conjunctivitis (red eyes). Zika very rarely results in death; however, it can cause serious congenital disabilities when an infection occurs during pregnancy. These typically manifest as microcephaly (collapsed skull), decreased brain tissue, eye tissue damage, and joint or muscle tone complications.

After an alarming peak in 2016, when the CDC reported more than 40,000 cases in the U.S. and its territories, Zika cases have decreased to remarkable lows. This may, in part, be due to pandemic-related travel restrictions:

2021: Cases in the United States
28 Cases
2021: Returning From Travel
1 Case

This chart reflects data taken on December 14, 2021.

2020 – 4 cases in citizens returning from travel, 57 cases in U.S. territories

2019 – 27 cases in citizens returning from travel, 74 cases in U.S. territories

2018 – 73 cases in citizens returning from travel, 148 cases in U.S. territories 

To learn more about the symptoms, treatment, and mosquito species that vector this virus, visit our educational page on Zika virus.

Chikungunya Virus

CHIK-World-Map_10-30-2020This map from CDC shows Chikungunya virus activity around the world in 2020.

Chikungunya (chik-en-gun-ye) is less well-known than other mosquito-borne diseases, but has become more widespread among American citizens, most often when traveling abroad. Like Zika, Chikungunya virus can spread when mosquitoes feed on a person who is carrying the infection. Chikungunya is also primarily transmitted by Aedes mosquitoes.

Those infected with Chikungunya virus may experience painful and even disabling symptoms that appear 3-7 days after transmission. These most often include fever, severe joint pain, and rash. Death is very rare and, in fact, infected individuals tend to develop immunity from future infections.

Annual U.S. Chikungunya cases have dropped dramatically in recent years - reaching a record low in 2021. This may, in part, be due to pandemic-related travel restrictions and effective mosquito control interventions:

2021: Cases in the United States
0 Cases
2021: Returning From Travel
21 Cases

This chart reflects data taken on December 14, 2021.

2020 – 28 cases in citizens returning from travel, 0 cases in U.S. territories

2019 – 192 cases in citizens returning from travel, 2 cases in U.S. territories

2018 – 116 cases in citizens returning from travel, 8 cases in U.S. territories 

To learn more about the symptoms, treatment, and mosquito species that vector this virus, visit our educational page on Chikungunya.2018 – 116 cases in citizens returning from travel, 8 cases in U.S. territories.

Dengue Virus

DengueThis map from CDC shows Dengue activity across the U.S. in 2021.

While many people think of Dengue as a disease we don’t need to worry about in the United States, mosquitoes capable of transmitting this virus are abundant in many areas of the country and quickly expanding their range.  Characteristic symptoms of dengue include high fever, rash, in addition to muscle and joint pain. In severe cases there can be serious bleeding or shock, which is life threatening.

In 2021 there were 86 human cases of Dengue diagnosed in 23 states across the continental United States.

To learn more about the symptoms, treatment, and mosquito species that vector this virus, visit our educational page on Dengue.

0
Human Cases (2021)
0
States Affected Across the U.S. (2021)

Monitoring Real-Time U.S. Mosquito-Borne Disease Activity

The key to limiting the spread of mosquito-borne diseases is monitoring and prevention. Municipalities and mosquito abatement districts often execute Integrated Mosquito Management (IMM) programs to help protect communities, but private citizens can support these efforts and empower themselves with disease tracking tools like the CDC’s ArboNet map. The map provides a live overview of reported mosquito activity and the most common vector-borne diseases, including:

  • West Nile Virus (WNV)
  • St. Louis Encephalitis (SLE)
  • Eastern Equine Encephalitis (EEE)
  • La Crosse (LAC)
  • Dengue (DEN) locally-acquired and travel-associated
  • Chikungunya (CHIK) locally-acquired and travel-associated
  • Zika Virus (ZIKA) locally-acquired and travel-associated
  • Powassan Virus (a tick-borne disease)

*ArboNet is designed to reflect real-time information, but there are times when it may not be in sync. This resource is easy to navigate and can be sorted by disease type, state, and year.

Public Education in Reducing Mosquito Populations 2 bugspray mosquito prevention health and safetyIn addition to staying informed about the risks posed by mosquitoes in your community, it’s important to observe any travel warnings issued by the CDC, particularly when pregnant. It’s also essential to exercise personal protection measures like wearing insect repellent and exercising best practices around your property to reduce mosquito reproduction.

VDCI is committed to public education and spreading awareness throughout the U.S. about the dangers of mosquito-borne diseases and their preventability, with the overarching goal of reducing illness and fatalities. Our dedicated and experienced team works tirelessly with local governments to prevent the spread of mosquito-borne diseases in all of the contracts we service from coast to coast.

VDCI Wants To Make Your Community Safer. How Can We Help?

Speak to an expert about implementing an IMM program.

Fill out the information below, and one of our experts will follow up with you shortly.

VDCI_Logo_squareSince 1992, Vector Disease Control International (VDCI) has taken pride in providing municipalities, mosquito abatement districts, industrial sites, planned communities, homeowners associations, and golf courses with the tools they need to run effective mosquito control programs. We are determined to protect the public health of the communities in which we operate. Our mosquito control professionals have over 100 years of combined experience in the field of public health, specifically vector disease control. We strive to provide the most effective and scientifically sound mosquito surveillance and control programs possible based on an Integrated Mosquito Management approach recommended by the American Mosquito Control Association (AMCA) and Centers for Disease Control and Prevention (CDC). VDCI is the only company in the country that can manage all aspects of an integrated mosquito management program, from surveillance to disease testing to aerial application in emergency situations.

How Surveillance and Disease Testing Reduces the Threat of Mosquito-borne Diseases

CDCMosquito Mosquito Surveillance & Disease Testing Reduce Mosquito-borne Disease 5

How Surveillance and Disease Testing Reduces the Threat of Mosquito-borne Diseases

CDCMosquitoPHOCO-037

In order to execute a successful integrated mosquito management program, surveillance is key. Through surveillance, entomologists are able to identify species composition, population dynamics, and the threat of dangerous mosquito-borne diseases. This information helps decision-makers choose the most effective management approach to control mosquitoes and protect community members in their area.

Mosquito Surveillance & Disease Testing Reduce Mosquito-borne Disease 3Adult mosquito surveillance is conducted in areas that have historically produced mosquito populations of a nuisance and/or public health concern or in novel areas in response to natural disasters like flash floods and hurricanes. Adult surveillance is accomplished through the use of specialized traps that are strategically placed throughout a given area. Traps are selected and placed based on mosquito concentrations, activity periods, and habitat characteristics like climate, wind, weather, and time of year. 

Trapped mosquitoes are then taken back to a laboratory for scientific examination, which involves species identification and counting. While some areas are primarily impacted by a single mosquito species, others may be home to vast and diverse populations. Entomologists study physical markers like colors and patterns of scales, setea, spines, and other features to distinguish between the 175+ species found in North America. Examinations also include disease testing. Different mosquito species are known for carrying specific pathogens such as West Nile virus (WNv)MalariaEastern Equine EncephalitisDengue FeverYellow FeverZika Virus, and Chikungunya.

CDCMosquito Mosquito Surveillance & Disease Testing Reduce Mosquito-borne Disease 5

Armed with this knowledge, entomologists can determine the severity of an outbreak and respond with the most effective management solutions based on the habits and characteristics of the target species. Often, experts utilize either truck-mounted sprayers, drone technology, or aerial fleets to apply adulticides at the proper rate and product droplet size. During this process, GPS technology is used to ensure safe and even distribution across large areas.

Mosquito Surveillance & Disease Testing Reduce Mosquito-borne Disease left side promo - 1

These mosquito elimination efforts are most effective when conducted as part of a customized Integrated Mosquito Management (IMM) program. IMM programs use a comprehensive toolbox of solutions to target mosquito populations and proactively prevent them. These programs typically require coordination between many different stakeholders, municipal entities, and public education providers. They may also evolve significantly over time in response to species population surges and possible insecticide resistance. 

Ultimately, no matter what kinds of challenges a community faces, consistent surveillance and disease monitoring serve as the foundation of their management efforts. Discover how our team can support an existing program or help you develop a custom program to meet your community’s needs by contacting our mosquito experts or calling us at 866.473.1753.

VDCI Wants To Make Your Property Safer.
How Can We Help?

Fill out the information below, and one of our experts will follow up with you shortly.

VDCI_Logo_squareSince 1992, Vector Disease Control International (VDCI) has taken pride in providing municipalities, mosquito abatement districts, industrial sites, planned communities, homeowners associations, and golf courses with the tools they need to run effective mosquito control programs. We are determined to protect the public health of the communities in which we operate. Our mosquito control professionals have over 100 years of combined experience in the field of public health, specifically vector disease control. We strive to provide the most effective and scientifically sound mosquito surveillance and control programs possible based on an Integrated Mosquito Management approach recommended by the American Mosquito Control Association (AMCA) and Centers for Disease Control and Prevention (CDC). VDCI is the only company in the country that can manage all aspects of an integrated mosquito management program, from surveillance to disease testing to aerial application in emergency situations.

Subscribe to our blog:

The Four Pillars of an Effective Mosquito Management Program

mosquito surveillance and testing

The Four Pillars of an Effective Mosquito Management Program

VDCI_4PillarsIMM_Infographic_0221_REVMosquito bites are an unfortunate side effect of time spent outdoors. But in addition to being a nuisance, mosquitoes are responsible for the transmission of many dangerous diseases including West Nile, Encephalitis, Zika, Malaria, and Yellow Fever. Because of these diseases, mosquitoes are considered the deadliest animal in the world. By understanding mosquito populations in your community, it is possible to reduce the risk of mosquito-borne diseases and enhance the overall enjoyment of the great outdoors.

Mosquitoes are an age-old problem, but modern strategies and innovations have made it possible to curb local populations by safely targeting the insect at all life stages. This is important for mosquito abatement districts, municipalities, and county or state entities responsible for leading vector management programs. These efforts are supported by four interlocked pillars that comprise an Integrated Mosquito Management (IMM) program: 

Surveillance & Disease Testing 

mosquito surveillance and testingThe more entomological experts can learn about population dynamics and species composition in a given area, the more efficiently they can target the problem at its source. Consistent surveillance and disease testing facilitate a greater understanding of the ever-changing challenges surrounding mosquito control, such as local population resistance and environmental considerations. GPS equipment and laboratory examinations by scientific experts play a critical role in data collection. This data is entered into proprietary databases for analysis, mapping, and reporting to local government agencies for coordinated management efforts.

Public Education

pubic education mosquito control helping the communityDespite the strategic and technological advances made in recent decades, mosquito control programs cannot be maximized without cooperation from the entire local community. Therefore, public education is an equally important pillar of an effective IMM plan. Depending on stakeholder goals, community education can be accomplished in a number of ways, including public education campaigns, the distribution of brochures or fact sheets, and partnership with the health department to encourage the use of repellents and protective clothing. When individuals take preventative steps to remove standing water from their property they can help community efforts. 

An integrated mosquito management approach often requires coordination between many different stakeholders and is most effective when rooted in the expertise of scientists and entomological experts. While mosquito control strategies and technologies continue to evolve, it’s important to remember that public education and surveillance will always go hand in hand with larval and adult mosquito control efforts. 

Larval Mosquito Control 

vdci mosquito surveillance Targeting mosquitoes before they become adults is essential for any good program. That’s where proactive ground services come into play. IMM professionals specialize in understanding and identifying environments that foster mosquito development, like ditches, ponds, and stormwater drains. This knowledge helps experts shape and implement custom solutions that target the unique area. These might include source reduction, habitat modification, the introduction of natural predators like mosquitofish, or the application of EPA-registered larvicides to achieve sustainable control from the ground or, for vast areas, from above using advanced aerial technology.

Adult Mosquito Control

aerial spraying mosquito controlAlthough surveillance and larviciding should be the first steps in any mosquito control program, the control of adult mosquito populations is a critical component of an integrated mosquito management effort. Utilizing either truck-mounted sprayers or aerial application equipment we are able to make highly-targeted applications to knockdown mosquitoes during their peak activity period. To ensure a successful application, advanced spray technologies must produce a proper product droplet size and utilize GPS technology to ensure safe and even distribution across large areas.

DID YOU KNOW?

Hurricanes present several public health concerns, including a rapid surge in mosquito populations, which can disrupt recovery efforts and could lead to an increased risk of mosquito-borne diseases such as the West Nile. In order to deal with this problem, aerial applications of insecticides over wide areas can provide relief to the impacted area, assisting in the recovery efforts.