Reduce Mosquito-Borne Diseases with Disease Testing

Colleague-counting-mosquitos-close-up-oversholder

How Data Collection and Testing Help Reduce Mosquito-Borne Diseases

Mosquitoes are known to transmit several dangerous diseases that can pose a threat to human health. In the United States, mosquito-borne diseases such as West Nile virus, Eastern equine encephalitis virus, and dengue have all caused significant harm to communities nationwide – making the prevention of mosquito-borne diseases crucial for helping keep citizens safe. 

Proactively reducing the spread of these diseases starts with effective mosquito surveillance as part of an Integrated Mosquito Management (IMM) plan. Once adult mosquitoes are collected from various traps, they are sorted, identified, and analyzed in a lab where they undergo several tests, including disease testing. By testing adult mosquitoes for diseases, we can identify areas where disease-carrying mosquitoes are present and take appropriate action to reduce their population – ultimately reducing the spread of mosquito-borne diseases

VDCI lab testing vial mosquito control education

How Mosquito-Borne Disease Testing Works

Integrated Mosquito Management plans require extensive knowledge of mosquito species, breeding activities, and population dynamics to be successful. By conducting regular adult mosquito surveillance, experts can steadily monitor local populations, allowing us to detect mosquito-borne diseases weeks before they can be transmitted to humans or animals. Here’s how the disease testing process works:

  1. Our expert entomologists strategically set adult mosquito traps throughout a given area. Various mosquito traps are used depending on what information is desired. Each trap has its own unique advantages, many attract specific mosquito species, thereby focusing efforts to collect certain mosquito species that are more likely to carry disease. Traps are typically set weekly for regular population monitoring.

  2. Once a mosquito sample is collected, our entomologists will take them back to the lab for mosquito-borne disease testing.

  3. To identify which diseases are present in mosquito populations, our laboratory technicians will run PCR and RAMP® WNv tests. PCR tests allow us to detect different pathogens that are present inside the mosquito, while RAMP® tests are designed to detect West Nile virus, a commonly found mosquito-borne disease in the U.S.

  4. If a mosquito sample tests positive for any mosquito-borne diseases, our entomologists will report the results to all appropriate local and state health departments. With this data, experts can determine the severity of a disease outbreak and respond with effective mosquito management solutions. This often involves returning to the area where the sample was collected and employing adult and larval mosquito control efforts. 
surveillance and disease testing - lab testing - mosquito control - vdci - vector management - markets served

Testing Best Practices

Mosquito-borne disease testing is crucial for helping support effective and environmentally responsible mosquito control. It’s important to follow industry best practices when testing mosquitoes for diseases such as West Nile and malaria. 

  1. Test mosquitoes regularly to ensure we detect the presence of mosquito-borne diseases in a timely manner. 

  2. Test mosquitoes trapped in various parts of the community to ensure we are casting a wide net for mosquito surveillance in the whole community. 

  3. Use mosquito-borne disease testing results to drive IMM programs and reduce the spread of disease. 

When a mosquito pool tests positive for a disease, the results of these tests are immediately communicated to government and health officials. This allows decision-makers to act quickly to reduce the spread of mosquito-borne diseases within their communities. By following these best practices, we can arm public officials with the knowledge they need to make control decisions to reduce the spread of mosquito-borne diseases

Truck-spraying-treatment

Why Mosquito-Borne Disease Testing and Surveillance Matters

Mosquito-borne diseases can have severe consequences on the health and well-being of our communities nationwide. These diseases are transmitted through mosquito bites and can cause symptoms ranging from fever, rash, and neurological problems. Mosquito-borne disease testing and mosquito surveillance provide data and insights to drive a more effective IMM plan that works to reduce mosquito breeding sites and control both nuisance and disease-carrying mosquitoes.

A successful IMM program involves more than mosquito-borne disease testing. Several key pillars, including adult mosquito and larval surveillance, employing a variety of control strategies, and implementing public education within the community, are all part of a comprehensive program’s success. Citizens can help reduce the spread of mosquito-borne diseases by following the 4Ds: Defend, Dress, Drain, and Dusk & Dawn. Applying an EPA-approved mosquito repellent and wearing close-toe shoes, light-colored clothing, and long sleeves and pants while outdoors can significantly protect you from mosquito bites. Draining any standing water that could be a potential mosquito breeding site significantly reduces the mosquito population and the application of insecticides. In addition, limiting your outdoor exposure time, especially from dusk to dawn when mosquitos are most active, will lessen your chances of being bitten. When a comprehensive IMM program is established, it will protect public health and keep our communities safe. 

Importance of Integrated Mosquito Management

Our scientific experts at VDCI have the experience, knowledge, and equipment required to implement a comprehensive IMM plan. A proactive approach to mosquito surveillance reduces mosquito-borne diseases and provides adequate time to respond to disease threats before becoming a serious issue to the public. With our industry-leading experts guiding mosquito management strategies in the communities we serve, you can rest assured that your citizens are protected.

Contact Our Experts

Complete the form below to speak to an expert about your community’s mosquito management needs.

VDCI_Logo_squareSince 1992, Vector Disease Control International (VDCI) has taken pride in providing municipalities, mosquito abatement districts, industrial sites, planned communities, homeowners associations, and golf courses with the tools they need to run effective mosquito control programs. We are determined to protect the public health of the communities in which we operate. Our mosquito control professionals have over 100 years of combined experience in the field of public health, specifically vector disease control. We strive to provide the most effective and scientifically sound mosquito surveillance and control programs possible based on an Integrated Mosquito Management approach recommended by the American Mosquito Control Association (AMCA) and Centers for Disease Control and Prevention (CDC). VDCI is the only company in the country that can manage all aspects of an integrated mosquito management program, from surveillance to disease testing to aerial application in emergency situations.

2023 Mosquito-Borne Disease Year In Review

West-Nile-Virus-UK-spread-Europe-outbreak-1001738

Exploring the Impact of Mosquito-Borne Diseases In 2023

In recent years, the United States has experienced an increase in the abundance and distribution of mosquito-borne diseases. The expansion of mosquito habitats, fueled by climate change, urban development, and other human-related factors poses considerable risks to public health. The need for increased vigilance and proactive strategies is clear in the 2023 data reported by the Centers for Disease Control (CDC) and Prevention, which indicates a resurgence of locally acquired malaria, a dramatic increase in West Nile virus cases, and shifts in the distribution of diseases like La Crosse encephalitis, Eastern equine encephalitis, dengue, Jamestown Canyon virus, and St. Louis encephalitis. In our 2023 review, we analyze the details of each disease, including case counts, notable trends, and the potential impact on public health.

*Please note, at the time of publishing this information, mosquito-borne disease-related deaths have not been reported by the CDC.

Malaria

While uncommon in the United States, 9 locally acquired malaria cases were reported across Florida (7 cases), Texas (1 case), and Maryland (1 case) during the summer of 2023. Though believed to be isolated events, the majority of these cases were caused by Plasmodium vivax, a protozoal parasite that infects the blood of its host and causes disease in humans.

Malaria can present with symptoms such as fever, chills, and flu-like illness. Severe cases may result in complications affecting the kidneys, lungs, and blood vessels. It is crucial to note that malaria can affect individuals of all ages, and prompt diagnosis is essential for effective treatment.

Typically, the United States records over 1,000 imported cases of malaria each year and zero locally acquired cases. According to the CDC, locally acquired mosquito-borne malaria has not been reported in the United States since 2003, when 8 cases were identified in Palm Beach County, FL. The main vector for malaria in the Eastern United States is Anopheles quadrimaculatus. The occurrence of 9 locally acquired malaria cases in 2023 serves as a reminder that mosquito dynamics are subject to change, and proactive measures are essential to address potential shifts in disease transmission patterns.

Malaria map global
Image Source: U.S. Centers for Disease Control and Prevention https://www.cdc.gov/parasites/malaria/index.html

West Nile virus

The frequency of West Nile virus infections reported in 2023 were more than double what we saw in 2022.  With torrential rains and flooding across many of the western states a total of 2,406 human disease cases were reported and many of those (n=1,599) experienced the most severe form of infection, including neuroinvasive symptoms. The top 5 states affected by this surge include  Colorado (626 cases), California (367 cases), Nebraska (150 cases), Illinois (113 cases), and South Dakota (93 cases). With 47 states reporting cases in 2023, compared to 43 in 2022, the virus continues to pose a widespread threat. 

Mosquitoes from the genera Culex are recognized as the primary vectors of the disease worldwide and in the U.S. Among these, Culex pipiens, Culex tarsalis, and Culex quinquefasciatus are the main species responsible for transmitting West Nile virus in the U.S. West Nile virus symptoms range from mild flu-like symptoms to severe neurological conditions. Older adults are particularly vulnerable to severe cases, experiencing complications such as meningitis and brain inflammation. 

Year Over Year Change

2023
2,406 cases (1,599 neuroinvasive)
2022
1,132 cases (827 neuroinvasive)
2021
2,911 cases (2,008 neuroinvasive)
2020
731 cases (559 neuroinvasive)

Top 5 states for Human Case Count:

2023 West Nile virus Cases In the U.S.
Image Source: U.S. Centers for Disease Control and Prevention, Accessed on January 31, 2024 https://www.cdc.gov/westnile/statsmaps/current-season-data.html
0
2023 Human Case Count
0
2022 Human Case Count
0
States* reporting cases 2023
0
States* reporting cases 2022

*note: CDC counts District of Columbia as a state

La Crosse Encephalitis

La Crosse encephalitis witnessed an increase in human cases, with 31 reported in 2023, including 30 neuroinvasive cases. Ohio (12 cases), Tennessee (5 cases), and West Virginia (5 cases) led the 10 states that reported cases. 

This mosquito-borne disease primarily affects children and can lead to symptoms such as fever, headache, nausea, and, in severe cases, neuroinvasive complications. The transmission of the La Crosse virus occurs through the bite of an infected Aedes triseriatus, commonly known as the Eastern tree-hole mosquito.

Year Over Year Change​

2023
31 cases (30 neuroinvasive)
2022
22 cases (19 neuroinvasive)
2021
40 cases (39 neuroinvasive)
2020
88 cases (84 neuroinvasive)

Top 3 states for Human Case Count:​

2023 La Crosse Encephalitis Cases In the U.S.
2023-disease-in-review
Image Source: U.S. Centers for Disease Control and Prevention, Accessed on January 31, 2024 https://www.cdc.gov/lac/statistics/current-season-data.html
0
2023 Human Case Count
0
2022 Human Case Count
0
States reporting cases 2023
0
States reporting cases 2022

Eastern Equine Encephalitis

Though there was only 1 case of Eastern Equine Encephalitis in 2022, 7 cases were reported by 4 states in 2023. All cases were neuroinvasive and occurred in the southeast – Alabama (3 cases), Florida (2 cases), Georgia (1 case), and Louisiana (1 case). 

While it primarily circulates between birds and the mosquito species Culiseta melanura, transmission to humans and animals can occur through mosquitoes of the Aedes, Coquillettidia, and Culex genera. These mosquitoes feed on infected birds and subsequently bite mammals, spreading the virus.

This disease poses a significant risk, especially among older adults and young children. Symptoms include high fever, headache, and, in severe cases, brain inflammation. The impact on vulnerable populations emphasizes targeted public health campaigns and mosquito control efforts.

Year Over Year Change​

2023
7 cases (7 neuroinvasive)
2022
1 case (1 neuroinvasive)
2021
5 cases (5 neuroinvasive)
2020
13 cases (13 neuroinvasive)

Top 4 states for Human Case Count:​

2023 Eastern Equine Encephalitis Cases In the U.S.
2023-disease-in-review
Image Source: U.S. Centers for Disease Control and Prevention, Accessed on January 31, 2024 https://www.cdc.gov/easternequineencephalitis/statistics-maps/current-season-data.html
0
2023 Human Case Count
0
2022 Human Case Count
0
States reporting cases 2023
0
States reporting cases 2022

Jamestown Canyon Virus

Jamestown Canyon virus experienced a notable increase, with 21 human cases reported in 2023, 15 of which were neuroinvasive. Of the 7 states that reported cases, Wisconsin led with 9 human case counts, followed by Michigan (5 cases), Minnesota (2 cases), New Hampshire (2 cases), Illinois (1 case), New Jersey (1 case), and New York (1 case). 

The virus can be spread by different types of mosquitoes, with deer often serving as the amplifying host. Symptoms may include fever, headache, and neurological issues in severe cases. While not often fatal, the virus can cause long-term neurological complications. However, humans are deemed “dead-end” hosts for the virus, as their blood lacks the virus levels necessary to infect mosquitoes and propagate the disease further.

Year Over Year Change​

2023
21 cases (15 neuroinvasive)
2022
12 cases (11 neuroinvasive)
2021
32 cases (21 neuroinvasive)
2020
13 cases (10 neuroinvasive)

Top 4 states for Human Case Count:​

2023 Jamestown Canyon Virus Cases In the U.S.
2023-disease-in-review
Image Source: U.S. Centers for Disease Control and Prevention, Accessed on January 31, 2024 https://www.cdc.gov/jamestown-canyon/statistics/current-season-data.html
0
2023 Human Case Count
0
2022 Human Case Count
0
States reporting cases 2023
0
States reporting cases 2022

St. Louis Encephalitis

St. Louis encephalitis reported 19 cases in 2023 (13 neuroinvasive), a notable decrease from 2022. Of the 3 reporting states, California recorded the highest number (17 cases), followed by South Carolina (1 case) and Washington (1 case). 

Culex pipiens, Culex quinquefasciatus, Culex tarsalis, and Culex nigripalpus are the predominant mosquito vectors. Wild birds are amplifying hosts, yet typically remain asymptomatic.

This disease primarily affects older adults and can result in symptoms such as fever, headache, and confusion. The severity of symptoms typically increases with age. Approximately 90% of elderly people who become infected with this virus develop brain inflammation, according to the CDC. The fatality rate for cases ranges between 5% and 20%.

Year Over Year Change​

2023
19 cases (13 neuroinvasive)
2022
33 cases (27 neuroinvasive)
2021
17 cases (11 neuroinvasive)
2020
16 cases (14 neuroinvasive)

Top 3 states for Human Case Count:​

2023 St. Louis Encephalitis Cases In the U.S.
2023-disease-in-review
Image Source: U.S. Centers for Disease Control and Prevention, Accessed on January 31, 2024 https://www.cdc.gov/sle/statistics/current-season-data.html
0
2023 Human Case Count
0
2022 Human Case Count
0
States reporting cases 2023
0
States reporting cases 2022

Dengue

Dengue comprises a group of viruses transmitted to humans through infected mosquitoes of the Aedes genus, specifically Aedes aegypti and Aedes albopictus. Though showing a slight overall decrease, Dengue still poses a considerable public health concern with 2,556 reported cases in 2023. More than half of the cases were travel-associated, but 1,104 were locally acquired. Puerto Rico and Florida emerged as the top jurisdictions reporting locally acquired cases.

Dengue symptoms range from mild fever to severe hemorrhagic fever. Severe cases are more common in young children and older adults. Transmission of the disease to a fetus can also occur during pregnancy.

Year Over Year Change​

2023
1,104 cases
1,452 cases
2022
1,044 cases
1,494 cases
2021
609 cases
205 cases
2020
983 cases
354 cases

*Red= Locally Acquired Cases, Grey= Travel Related Cases

Top 4 states for Human Case Count:​

2023 Dengue Cases In the U.S.
2023-disease-in-review
Image Source: U.S. Centers for Disease Control and Prevention, Accessed on January 31, 2024 https://www.cdc.gov/dengue/statistics-maps/current-data.html
0
2023 Human Case Count
0
2022 Human Case Count
0
States reporting cases 2023
0
States reporting cases 2022

Utilizing Data to Drive Informative Mosquito Management Programs

The 2023 data highlights the evolving regional dynamics of mosquito-borne diseases and underscores the importance of tailored, localized efforts to limit the spread. Adult mosquito management,  surveillance, disease testing, and public education are pivotal in safeguarding the health of our nationwide communities. Integrated Mosquito Management programs incorporate these key strategies and provide a science-based approach to mosquito control. As we navigate the evolving landscape of mosquito-borne diseases, proactive measures and a collective commitment to public health remain our most impactful tools to combat these growing threats.

Other Noteable Data

  • Locally acquired malaria found in U.S. for first time in 20 years (2003, 8 cases in Florida)
  • West Nile virus case count more than doubles from 2022 (105.65% increase)
  • La Crosse (31% 🔼) , Eastern Equine (600% 🔼), and Jamestown Canyon (66.66% 🔼) all see human case count increases.
  • Dengue human case count decreases slightly (🔽 -7.6%)

VDCI Wants To Make Your Community Safer. How Can We Help?

Speak to an expert about implementing an IMM program.

Fill out the information below, and one of our experts will follow up with you shortly.

Since 1992, Vector Disease Control International (VDCI) has taken pride in providing municipalities, mosquito abatement districts, industrial sites, planned communities, homeowners associations, and golf courses with the tools they need to run effective mosquito control programs. We are determined to protect the public health of the communities in which we operate. Our mosquito control professionals have over 100 years of combined experience in the field of public health, specifically vector disease control. We strive to provide the most effective and scientifically sound mosquito surveillance and control programs possible based on an Integrated Mosquito Management approach recommended by the American Mosquito Control Association (AMCA) and Centers for Disease Control and Prevention (CDC). VDCI is the only company in the country that can manage all aspects of an integrated mosquito management program, from surveillance to disease testing to aerial application in emergency situations.

VDCI’s 2022 Mosquito-Borne Disease Year In Review

West-Nile-Virus-UK-spread-Europe-outbreak-1001738

With COVID-19, an ongoing “tripledemic” of multiple respiratory diseases, the economy, and politics dominating the headlines in 2022, vector-borne diseases didn’t get much attention in the national spotlight. However, diseases spread by mosquitoes and ticks are on the leading edge of increasing concerns about climate change, and the experts at VDCI continue to monitor their activity so we can keep the public and our clients informed.

This year in review looks at major mosquito-borne diseases in the United States, summarizes case counts in 2022, and highlights key areas of activity. As we kick off a new year, these data points can inform and shape your integrated mosquito management plans, as well as give you information to provide to your citizens, employees, customers, and the public at large to help them protect themselves and their families from mosquito-borne disease.

West Nile Virus

2022 US Case Count: 1,035 human cases; 79 deaths

West Nile continues to be the deadliest mosquito-borne disease in the continental U.S. First reported in 1999, the virus is now considered endemic by public health authorities in most areas.

There are an estimated 200 species of mosquitoes found in the United States; of those, approximately 150 can be vectors of West Nile virus (WNv). Species of the Culex genus are considered to be the primary carriers of the disease both globally and in the U.S., with Culex pipiens, Culex tarsalis, and Culex quinquefasciatus being the primary species that spread West Nile virus in the U.S.

Humans contract WNv when bitten by an infected mosquito. While even healthy adults can contract the disease, West Nile can be especially dangerous for the very young and the very old, as well as anyone with a compromised immune system. Many infected people have no symptoms; however, those that do may have flu-like symptoms, fever, rash, neck stiffness, and headache. For some infected individuals, the disease can be more severe and lead to encephalitis, or swelling of the brain, and be fatal. The U.S. Centers for Disease Control and Prevention (CDC) estimate that 1 in every 150 cases of West Nile lead to the central nervous system being affected, and the onset of neuroinvasive disease. These cases become more severe and can leave people with long-lasting or permanent neurological symptoms.

In 2022*, there were 1,035 human cases of West Nile reported by the CDC in the U.S., with 298 being qualified as neuroinvasive disease. There were 79 fatalities as a result of the disease. Both human cases and deaths from WNv were significantly down from 2021, but since the disease is cyclical, the drop in case counts does not indicate that there is less reason for concern, and some regions of the country reported significantly higher case counts than they’ve ever seen.

Nearly every U.S. state faced West Nile virus, with only 4 reporting no activity of any type: Alaska, Hawaii, Maine, and Montana. None of the 8 reporting U.S. territories had West Nile activity, non-human, or human infections.

States with the highest incidence of human West Nile virus cases
Colorado (204)
California (168)
New York (79)
South Dakota (66)
Nebraska (64)

States with the highest West Nile virus death toll
Colorado (18)
California (11)
Texas (7)
Louisiana (6)
Nebraska (4)
Arizona (4)
Illinois (4)

Get more information on this mosquito-borne disease on our West Nile virus page. If you are concerned about West Nile virus in your community or around your business, connect with us to speak with one of our experts.

Dengue

2022 US Case Count: 1073 human cases, 0 deaths

Dengue is a group of viruses spread to humans by infected Aedes genus mosquitoes, specifically Aedes aegypti and Aedes albopictus; pregnant people can also pass the disease to a fetus. There are 4 common Dengue viruses, denoted as Dengue 1, 2, 3, and 4. Worldwide, there are over 400 million cases annually, and an estimated 40,000 people die each year.

According to the CDC, public health authorities in the United States reported a total of 1,073 cases of Dengue this year. However, the vast majority of those cases were travel-acquired, meaning that the subjects were infected outside of the U.S. Only 59 cases were considered locally transmitted. There were no reported fatalities in the country as a result of Dengue, although this may reflect underreporting.

U.S. territories Guam and Puerto Rico reported a combined total of 828 cases. Unlike the continental U.S., nearly all of these cases in the territories were locally acquired – 820, to be exact. This is not surprising, given the more tropical conditions, and vector abundance in these locales.

One significant development that is worth noting: in 2022, the Dengvaxia vaccine was approved for use in the United States in children august 9 to 16 with laboratory-confirmed results of a previous Dengue infection.

The U.S. case counts in 2022 illustrate a substantial increase in reported cases over both 2021 and 2020, but a slight decrease versus 2019. This could be a reflection of an increase in the traveling public in 2022, since there was a significant post-pandemic return-to-travel. 2019 marked the highest number of Dengue cases reported in the U.S. since 2010 when it became a reportable disease and case counts began being tracked. That makes 2022 the second-highest case count reported in U.S. states in the last 12 years.

This could be an interesting trend to watch around the globe. According to the Pan American Health Organization, in 2022, a number of countries in North, Central, and South America saw substantial increases in human Dengue cases over 2021.

Americas (North, South, Central), 5 countries with highest increases in Dengue human cases 

Country

2021 Dengue Cases

2022 Dengue Cases

Percentage Increase

United States

117

1073

⬆️817.094%

Panama

3095

11172

⬆️260.969%

El Salvador

5572

16542

⬆️196.877%

Guatemala

2861

8407

⬆️193.848%

Nicaragua

36741

97541

⬆️165.483%

The World Health Organization (WHO) tracks Dengue activity around the globe and in early January 2023, issued an update on Dengue in the Western Pacific Region, indicating that activity has substantially increased in many countries including Lao, Malaysia, the Philippines, Singapore, and Viet Nam.

Get more facts and information about Dengue virus from VDCI.

La Crosse Virus Disease

2022 US Case Count: 21 human cases

La Crosse virus is typically spread by Aedes triseriatus, commonly called the Eastern treehole mosquito. This disease most commonly affects children and teenagers.

La Crosse virus disease is endemic in the United States and is considered a reportable illness.

Symptoms of La Crosse virus are similar to those of other mosquito-borne diseases and include fever, headache, nausea and vomiting, and fatigue. However, it can become dangerous if it becomes La Cross encephalitis, which results in infection of the brain that can manifest through seizures, disorientation, loss of vision, and other serious conditions. Fatalities are rare.

Although the CDC’s La Crosse virus website does not reflect case counts after 2020, the agency’s Arbovirus Surveillance System, ArboNet, reports that there were 21 infections in 2022. More than half of these cases were reported in Ohio. The total number of cases is down from 2021, when 34 cases were reported.

U.S. states reporting La Crosse virus cases in 2022

State

Case Count

Minnesota

3

North Carolina

2

Ohio

13

Tennessee

2

West Virginia

1

las-crosse-virus-disease-cdc-usa-map

Eastern Equine Encephalitis (EEE)

2022 US Case Count: No reporting available

While rare, Eastern Equine Encephalitis (EEE) is a mosquito-borne disease that can affect both humans and some animals. While it is propagated between birds and the mosquito species Culiseta melanura, it is spread to humans and animals by species in the Aedes, Coquillettidia, and Culex genera that feed on infected birds and then mammals.

As its name suggests, horses are especially susceptible to the disease. Other animals that can become infected with EEE virus (EEEv) include pigs, rodents, and certain species of deer. Scientists believe that humans who contract and recover from EEEv have lifelong immunity against re-infection.

Approximately 4 – 5% of human EEEv infections lead to contracting Eastern Equine Encephalitis (EEE), which results in swelling of the brain. EEE has a very high mortality rate, with about one-third of those infected succumbing to the disease.

From 2011 – 2020, only 110 human cases of EEEv have been reported in the United States. In 2019, several outbreaks sparked concern and resulted in 38 human cases and 19 deaths, the highest number of deaths reported in a single year from the disease.

As the map below illustrates, these EEEv infections occurred primarily on the East Coast of the U.S., with high concentrations in New England, the Southeastern U.S., and the state of Michigan.

EEEv infections in the U.S. by state, 2011 – 2020

eeev-infections-us-by state-2011-2020

The CDC has not reported on EEEv infections since 2020. However, the U.S. Department of Agriculture’s Animal and Plant Health Inspection Service (APHIS) reported 110 animal cases in 2021. No data is available yet for 2022.

Learn more about EEE and EEEv on VDCI’s Eastern Equine Encephalitis resource page.

Chikungunya virus

2022 U.S. Case Count: 47 human cases (travel acquired)

Chikungunya virus was rarely discussed in the United States prior to 2006, but as global travel increased and climate shifts have occurred, more U.S. citizens have had experiences with Chikungunya in recent years. It is prevalent in the Caribbean, and while most cases remain travel-acquired, documented local transmission first occurred in 2013. Since 2015, Chikungunya has been a reportable illness in the U.S., which means that health officials are required to report any cases.

Spread to humans via the bite of an infected Aedes genus mosquito, particularly Aedes aegptyi or Aedes albopictus, Chikungunya virus infection can leave those infected with symptoms such as fever, joint pain and swelling, muscle aches, headaches, and more; joint pains are one of the most prominent symptoms and can last for months after the virus subsides. Fatalities are rare.

The CDC has not updated its Chikungunya reporting site since 2020, however, through the agency’s National Arbovirus Surveillance System ArboNet website, VDCI notes that 47 cases of the disease were reported by states in 2022. All of these cases were travel acquired. These cases were reported in 21 states, as reflected in the table below.

U.S. states reporting travel-acquired Chikungunya virus cases in 2022

State

Case Count

California

4

Colorado

3

Illinois

8

Iowa

3

Kansas

1

Kentucky

1

Louisiana

1

Massachusetts

2

Minnesota

1

New Hampshire

1

New Jersey

1

New Mexico

1

New York

5

North Carolina

3

Ohio

2

Pennsylvania

2

Tennessee

2

Utah

1

Vermont

1

Virginia

3

Washington

1

chikunginya-virus-travel-usa-map-2022

In 2021, there were 21 reported travel-acquired cases, so 2022 reflects a 123% increase in overall case counts over the previous year. As with the increase in Dengue, this may reflect a more global trend that is the result of a return to travel post-pandemic.

You can learn more about Chikungunya virus, its history, and its symptoms on VDCI’s resource page.

Zika Virus

2022 U.S. Case Count: 3 human cases (travel acquired)

Like Chikungunya virus, Zika virus has only recently become a significant concern in the United States. But, after significant tropical outbreaks in 2015 and 2016, locally acquired cases were reported in southern states such as Florida and Texas with much media attention, putting the disease on the map in the U.S. with health authorities and the public at large alike.

While Zika virus is spread primarily through the bite of infected Aedes genus mosquitoes, especially Aedes aegypti and Aedes albopictus that are found prevalently in the U.S., it can also be spread through sexual activity, which means that someone does not need to be bitten by a mosquito to be infected. This disease carries special risks for pregnant people who become infected. Zika virus can be passed to a fetus by the mother and result in birth defects and abnormalities.

In 2022, the CDC’s ArboNet system had no reports of locally transmitted Zika virus, but 3 travel-acquired cases were reported in the states listed below. This is a slight decrease from 2021 when 4 cases were reported.

U.S. states reporting travel-acquired Zika virus cases in 2022

State

Case Count

Illinois

1

Kentucky

1

New York

1

zika-virus-travel-usa-map-2022-state

While these case counts are low, there is no way to predict when the U.S. could see a spike in activity like it did in 2015 and 2016. It is important for community leaders to help citizens understand the risks associated with Zika virus and to report any Zika symptoms to their doctors, especially if they or someone they are close with has recently traveled to an area where Zika virus is prevalent. It is also critical that individuals understand the risks and take action to protect themselves, especially while traveling.

Find out more about Zika virus, symptoms, and mosquito-bite protection on VDCI’s vector-borne disease resource website.

Other vector-borne diseases of concern

While this year-in-review focuses on 6 major mosquito-borne diseases, there are others that remain a source of concern in the U.S., including malaria, St. Louis Encelphalitis and Jamestown Canyon virus. And let’s not forget heartworm, which is spread by infected mosquitoes to our beloved pets.

There are also other vector-borne diseases, which encompass viruses and illnesses spread by other pests, such as rodents, ticks, and fleas. These include some common conditions that most people are familiar with, such as Lyme disease, and lesser-known diseases such as hantavirus, plague, Rocky Mountain Spotted fever, Powassan virus, and more.

Protecting your community from mosquitoes

 

Whether you are responsible for mosquito programs in your community or concerned about mosquito activity on your business property, having an in-depth knowledge of integrated mosquito management programs is critical to protecting those under your care from mosquito-borne disease.

VDCI is committed to mosquito surveillance and disease monitoring, developing robust integrated mosquito management programs for our clients, and educating the public on measures to protect themselves from vector-borne diseases. We also offer emergency response and drone and aerial application services to assist communities in preventing disease, especially following major weather events such as hurricanes and flooding.

If we can assist you or your community in mosquito prevention, please connect with us online or call (866) 977-6964.

*Results reported to U.S. Centers for Disease Control and Prevention as of January 12, 2023.

The key to limiting the spread of mosquito-borne diseases is monitoring and prevention. Municipalities and mosquito abatement districts often execute Integrated Mosquito Management (IMM) programs to help protect communities, but private citizens can support these efforts and empower themselves with disease tracking tools like the CDC’s ArboNet map. The map provides a live overview of reported mosquito activity and the most common vector-borne diseases, including:

  • West Nile Virus (WNV)
  • St. Louis Encephalitis (SLE)
  • Eastern Equine Encephalitis (EEE)
  • La Crosse (LAC)
  • Dengue (DEN) locally-acquired and travel-associated
  • Chikungunya (CHIK) locally-acquired and travel-associated
  • Zika Virus (ZIKA) locally-acquired and travel-associated

*ArboNet is designed to reflect real-time information, but there are times when it may not be in sync. This resource is easy to navigate and can be sorted by disease type, state, and year.

Public Education in Reducing Mosquito Populations 2 bugspray mosquito prevention health and safetyIn addition to staying informed about the risks posed by mosquitoes in your community, it’s important to observe any travel warnings issued by the CDC, particularly when pregnant. It’s also essential to exercise personal protection measures like wearing insect repellent and exercising best practices around your property to reduce mosquito reproduction.

VDCI is committed to public education and spreading awareness throughout the U.S. about the dangers of mosquito-borne diseases and their preventability, with the overarching goal of reducing illness and fatalities. Our dedicated and experienced team works tirelessly with local governments to prevent the spread of mosquito-borne diseases in all of the contracts we service from coast to coast.

VDCI Wants To Make Your Community Safer. How Can We Help?

Speak to an expert about implementing an IMM program.

Fill out the information below, and one of our experts will follow up with you shortly.

VDCI_Logo_squareSince 1992, Vector Disease Control International (VDCI) has taken pride in providing municipalities, mosquito abatement districts, industrial sites, planned communities, homeowners associations, and golf courses with the tools they need to run effective mosquito control programs. We are determined to protect the public health of the communities in which we operate. Our mosquito control professionals have over 100 years of combined experience in the field of public health, specifically vector disease control. We strive to provide the most effective and scientifically sound mosquito surveillance and control programs possible based on an Integrated Mosquito Management approach recommended by the American Mosquito Control Association (AMCA) and Centers for Disease Control and Prevention (CDC). VDCI is the only company in the country that can manage all aspects of an integrated mosquito management program, from surveillance to disease testing to aerial application in emergency situations.

Are Mosquitoes Harmful to Dogs and Horses? Yes! Here’s How You Can Protect Them…

Heartworm Prevention and Dogs

Most of us know the dangers mosquitoes pose to humans across the globe, but it’s easy to forget about the toll vector-borne diseases can take on pets, particularly dogs and horses. Taking preventative measures to protect these animals is crucial. It’s also important to know and recognize the symptoms of infection to help ensure these animals receive swift care if they do contract a mosquito-borne disease – and understanding how threatening diseases spread can help break the cycle of disease transmission.

Heartworms

heartworm fact iconIf you’re a dog owner, your vet has likely warned you about Dirofilaria immitis, better known as heartworms. More than 250,000 dogs are diagnosed annually. After biting an infected animal, Aedes, Anopheles, and Mansonia mosquitoes can transmit this parasitic roundworm to many other species, including cats, foxes, raccoons, and wolves, but dogs are the natural host. As they mature over approximately 7 months, heartworms may grow up to 12 inches and survive for several years within a dog’s circulatory system.

Symptoms of Heartworm Disease in Dogs:

  • Persistent cough
  • Decreased appetite
  • Weight loss
  • Stunted growth
  • Fatigue
  • Anemia
  • Fainting

Treatment of Heartworm Disease in Dogs

VDCI_Mosquito_Emerg_Response_Guide_Page_08Without proper treatment, most dogs will die from heartworm disease which is why it’s important to monitor your dog and seek medical guidance if your dog is experiencing any of the symptoms associated with heartworms. Luckily, treatment is typically successful and prescription medicine can be used to prevent the development of heartworms should a dog be bitten by an infected mosquito. There are also FDA-approved products to prevent heartworms in dogs. Depending on the severity and stage of the disease, surgical removal may be necessary.

Eastern Equine Encephalitis (EEE) Virus

Though mosquitoes are most known for infecting dogs with heartworms, which cannot be spread to humans, dogs can also contract other viruses like Eastern Equine Encephalitis (EEE), sometimes referred to as sleeping sickness. However, horses and other equids are the natural host of EEE. Culiseta melanura mosquitoes are the primary vector of this virus, but Coquillettidia pertubans, Aedes sollicitans, and Ochlerotatus canadensis may also contribute to the spread. This virus attacks and inflames the central nervous system (brain and spinal cord) of its host and is often fatal.

Symptoms of EEE in Horses:

  • Fever
  • Lack of appetite
  • Muscle weakness
  • Disorientation
  • Blindness
  • Seizures
  • Paralysis

Treatment of EEE in Horses

EEE Prevention for HorsesIn 80-90% of EEE cases, the infection is fatal, and horses may die within a few days. Luckily, vaccinations are available to protect horses from infection. While rare, EEE can also be contracted by humans. Treatment can be effective for less severe infections, but even with treatment, the disease is fatal in approximately 30% of cases.

Heartworms and EEE are more commonly found in warmer, wetter climates, but can be contracted nearly anywhere in the country. While it’s crucial to keep animals up-to-date on their vaccinations and preventative medicine no matter where they are located, it’s equally important to understand how to protect ourselves from mosquito bites and mosquito-borne diseases:.

To help prevent mosquito bites, remember the 4 “Ds”

1. DEFEND

Consistently wear and reapply an EPA-approved repellent when outdoors

  • The safest and most effective repellents should contain one of the following active ingredients:
    • DEET
    • Picaridin (known as KBR 3023 and icaridin outside the US)
    • IR3535
    • Oil of lemon eucalyptus (OLE)
    • Para-menthane-diol (PMD)
    • 2-undecanone
  • Always follow manufacturer guidelines found on the label to ensure safe and optimal product use.
  • Review the EPA’s list of registered insect repellents – www.epa.gov/insect-repellents/find-repellent-right-you
  • Keep pets up to date on vaccinations and use preventative medications.

2. DRESS

Wear closed-toe shoes, light colors, and long sleeves and pants to keep your skin protected.

  • Mosquitoes are more attracted to darker clothing.
    Comfortable, loose-fitting clothes are more effective at preventing mosquito bites.
  • Bare skin on your hands, ankles, face, neck, or other areas should be protected with mosquito repellent.

3. DRAIN

Mosquitoes require standing water to complete their life cycle.

  • Empty and prevent future water collection in outdoor tools and objects like tires, tarps, buckets, birdbaths, basketball goals, wheelbarrows, and lawn care equipment.
  • Ensure water can drain properly from gutters, flower pots, watering cans, rain barrels, low-lying ditches, and stormwater pipes and structures.

4. DUSK & DAWN

Limit spending time outdoors when mosquitoes are most active.

  • Mosquitoes can become dehydrated in direct sunlight.
  • During the day, most mosquito species prefer cool, shaded places like thick weeds, ivy, bushes, and wood piles.

Self-protection – and the protection of your pets – is an essential part of an integrated mosquito management approach that incorporates public education, partnership with local community leaders and organizations, professional surveillance, monitoring, disease testing, and the use of pesticides when pre-determined action thresholds have been met. At VDCI, we are dedicated to driving the mosquito management industry forward through technological advancement and setting new standards for safety and efficiency, so people and animals can safely enjoy the outdoors.

Contact Us to Learn More About Effective Mosquito Prevention Strategies

VDCI_Logo_square Since 1992, Vector Disease Control International (VDCI) has taken pride in providing municipalities, mosquito abatement districts, industrial sites, planned communities, homeowners associations, and golf courses with the tools they need to run effective mosquito control programs. We are determined to protect the public health of the communities in which we operate. Our mosquito control professionals have over 100 years of combined experience in the field of public health, specifically vector disease control. We strive to provide the most effective and scientifically sound mosquito surveillance and control programs possible based on an Integrated Mosquito Management approach recommended by the American Mosquito Control Association (AMCA) and Centers for Disease Control and Prevention (CDC). VDCI is the only company in the country that can manage all aspects of an integrated mosquito management program, from surveillance to disease testing to aerial application in emergency situations.

Debunking Myths: Bats for Effective Mosquito Control

Eastern Small Footed Bat

Written by:
Michael “Doc” Weissmann, Ph.D., VDCI Entomologist

Co-Written by:
Dr. Louise Lynch-O’Brien of the University of Nebraska at Lincoln

Though mosquitoes are considered the most dangerous species in the world, they are more widely known as one of the most annoying. For thousands of years, humans have sought out solutions and techniques to thwart mosquitoes when spending time outdoors – some effective, some not. While modern scientific advancements have provided us the tools and knowledge to manage mosquitoes more safely and effectively than ever before, dozens of old wives’ tales still persist. One of the most common misconceptions centers around bats.

Bats can consume up to 1,000 mosquitoes in an hour, right? This “fact” is often presented as a primary reason to promote bat conservation. In more extreme instances, some activists claim that installing bat boxes in a neighborhood will lead to successful mosquito control and prevent people from contracting mosquito-borne illnesses like West Nile virus.

Eastern Small Footed BatThe claim likely originated from a study published in 1960 about how certain bats use echolocation to detect and capture small insects (Griffin et al. 1960). As part of the study, Donald Griffin and colleagues at Harvard University photographed little brown bats (Myotis lucifugus) and Eastern small-footed bats (M. leibii) preying on mosquitos (Culex quinquefasciatus) placed together in a room measuring (2.44 m. wide by 4.88 m. long by 2.44 m. tall (8 ft. wide by 16 ft. long by 8 ft. high). Only a small fraction of the bats (less than 10%) demonstrated prey capture behavior when released into the room that initially contained approximately 2000 mosquitoes, but the study focused on these “good catchers.” Again, this was a study on prey capture technique, not prey quantity.

Based on the amount of weight gained by the bats during each trial, the researchers estimated the number of mosquitoes consumed on average during that period. The study began with 2,000 mosquitoes for the initial trial, but they were not able to replenish the mosquito population to that same level during subsequent trials. The “champion catcher” was an individual M. leibii that was recorded to consume an average of 9.5 mosquitoes per minute during the 15-minute trial. It is summarized in the paper with the statement, “This bat was thus catching about ten mosquitoes per minute or one every six seconds.” Note that this was the highest rate recorded during the study, with all other capture rates being significantly less.

Since that publication, others have quoted this statement out of context, and used it to extrapolate numbers to greater time periods. Ten mosquitoes per minute becomes 600 mosquitoes in an hour. Just as the 9.5 mosquitoes per minute was rounded to 10, the 600 mosquitoes per hour is usually generously rounded up to 1000. Over an 8-hour mid-summer night, that would be 8,000 mosquitoes per night, or more than 2.9 million mosquitoes in a year, or nearly 117 million mosquitoes over a 40-year lifespan – just for one bat! Very impressive.

Is this kind of extrapolation justified? It assumes that the “champion catcher” rate of consumption is 1) true for all bats; 2) maintained for a full hour (or for the full evening, week, month, year, lifetime); and 3) no other insects are consumed except mosquitoes. The original study placed the bats in a room with only mosquitoes to feed on and nothing else. It has been demonstrated that some species of bats do consume mosquitoes as part of their diet (for example, Wray et al. 2018). However, bats tend to be generalist and opportunistic predators, feeding on a wide variety of nocturnal insects as available at different times of year and different times during a single evening. Optimal foraging strategy suggests that bats would prefer larger insects like beetles and moths that provide more dietary value for the predatory effort (“more bug for the buck”). Except in circumstances where mosquitoes are temporally and locally extremely abundant, they are likely to comprise only a small fraction of a bat’s caloric intake on a typical night of foraging.

Bats are important predators, valuable to humans for their role in reducing agricultural pest populations. Boyles et al. (2011) estimate the annual benefit of bat predation to North American agriculture at more than US$3.7 billion, based on consumption of crop pest species (a value that should be quoted with caution, of course, since that dollar figure is itself an extrapolation, based on the per-acre value of cotton in Texas!). However, studies confirming bats’ importance in mosquito control are limited, and the “1000 mosquitoes per hour” claim is not likely to be true under natural conditions.

Luckily, there are much more impactful ways to prevent the spread of mosquito-borne diseases. Integrated Mosquito Management (IMM) programs are designed to proactively target mosquitoes at every stage of their lifecycle using professional surveillance and disease testing, population monitoring, larviciding, and adulticiding. These science-backed actions are supported by public education initiatives that empower community members to wear EPA-registered repellents and clothing that covers their bare skin, drain standing water where mosquitoes breed, and stay indoors during dusk and dawn when mosquitoes are most active.

Seeing bats swooping around in the evening does not mean you’re being defended, but they can serve as an important reminder to continue practicing responsible mosquito prevention efforts that protect ourselves and our communities.

Boyles, J.G., Cryan, P.M., McCracken, G.F., & Kunz, T.H. (2011). Economic importance of bats in agriculture. Science, 332 (6025): 41-42.

Griffin, D.R., Webster, F.A., & Michael, C.R. (1960). The echolocation of flying insects by bats. Animal Behaviour, 8 (3-4): 141-154.

Wray, A.K, Jusino, M.A., Banik, M.T., Palmer, J.M., Kaarakka, H., White, J.P., Lindner, D.L., Gratton, C., & Peery, M.Z. (2018). Incidence and taxonomic richness of mosquitoes in the diets of little brown and big brown bats. Journal of Mammalogy, 99 (3): 668-674.­

Contact Us to Learn More About Effective Mosquito Prevention Strategies

VDCI_Logo_square Since 1992, Vector Disease Control International (VDCI) has taken pride in providing municipalities, mosquito abatement districts, industrial sites, planned communities, homeowners associations, and golf courses with the tools they need to run effective mosquito control programs. We are determined to protect the public health of the communities in which we operate. Our mosquito control professionals have over 100 years of combined experience in the field of public health, specifically vector disease control. We strive to provide the most effective and scientifically sound mosquito surveillance and control programs possible based on an Integrated Mosquito Management approach recommended by the American Mosquito Control Association (AMCA) and Centers for Disease Control and Prevention (CDC). VDCI is the only company in the country that can manage all aspects of an integrated mosquito management program, from surveillance to disease testing to aerial application in emergency situations.

Do These Mosquito Prevention Products and Strategies Work?

mosquito-born diseases webinar

We’ve all experienced aggravating mosquito bites when spending time outdoors, and for most people, they’re nothing more than a nuisance. And many of us have heard about outbreaks of West Nile Virus, Dengue, Eastern Equine Encephalitis, and other diseases, but may have dismissed the risk of contracting them as extremely rare. These are dangerous misunderstandings; mosquitoes kill more than one million people each year, making them the deadliest species in the world. 

Protecting ourselves from mosquito bites is essential to the well-being of our communities, but unfortunately, there are many myths and misconceptions about popular mosquito deterrents. VDCI is committed to educating the public on the safety and efficacy of common mosquito prevention tools – and supporting communities, state agencies, and mosquito-abatement districts with science-backed solutions and management strategies. 

Common mosquito prevention myths and misconceptions

Bug zappers – There’s a common belief that bug zappers attract and electrocute mosquitoes using ultraviolet lights or black lights. In fact, more than two million homeowners turn to bug zappers for mosquito management around their properties. In reality, research indicates that mosquitoes comprise only 6% of the bugs killed and these devices are actually detrimental to beneficial insects including moths and beetles. These devices do not work to reduce host-seeking mosquitoes, because females in search of a bloodmeal are most attracted to carbon dioxide expelled by humans and animals when they breathe.

bug-zapper

Misting sprays – Private misting systems have become a popular solution marketed by companies that are not licensed in public health. This means that the spray products they use do not have to be registered with the Environmental Protection Agency (EPA). While the products are capable of killing mosquitoes, this approach can be harmful to the environment and may result in unnecessary exposure to people. When insecticides are sprayed in unnecessary amounts or intervals, mosquitoes can become resilient to them over time. Improperly applied insecticides can also harm non-target insects that are beneficial to the environment. The American Mosquito Control Association (AMCA) has taken a stance against these misting systems until there has been more research and efficacy testing done.

Bats – While they do feed on insects, fecal studies suggest that mosquitoes make up less than 1% of a typical bat’s diet. Attracting them with bat houses can certainly help reduce moths, beetles, and leafhoppers, which are favored food sources, but will have no significant impact on mosquito populations. Furthermore, some bat species may actually pose risks to humans, particularly when they’re able to roost near attics and other living areas. Bat droppings (guano) are capable of producing spores that cause a harmful respiratory disease when inhaled. They can also carry parasites and viruses like rabies. According to the Centers for Disease Control and Prevention (CDC), bats are the leading cause of rabies deaths in the United States. 

Integrated Mosquito Management

The safest and most effective mosquito management solutions are backed by science and executed as part of an Integrated Mosquito Management (IMM) program. IMM programs provide solutions that target mosquitoes at every stage of their lifecycle. And diligent monitoring and surveillance efforts ensure diseases, population changes, and signs of insecticide resistance are identified as soon as possible. When adult populations reach unacceptable or dangerous levels, then insecticides that are registered with the EPA should only be applied by licensed professionals in appropriate amounts, in the right places, and at the right times.

Proactive science-backed solutions are most effective when supported by knowledgeable citizens. VDCI partners with municipalities, mosquito abatement districts, and public health organizations to disseminate educational resources that bust myths and misconceptions about mosquito management and arm people with essential mosquito prevention tips to help them limit breeding habitats on their property and protect themselves from bites – because everyone deserves peace of mind while enjoying the outdoors.

Contact Us to Learn More About Effective Mosquito Prevention Strategies

VDCI_Logo_square Since 1992, Vector Disease Control International (VDCI) has taken pride in providing municipalities, mosquito abatement districts, industrial sites, planned communities, homeowners associations, and golf courses with the tools they need to run effective mosquito control programs. We are determined to protect the public health of the communities in which we operate. Our mosquito control professionals have over 100 years of combined experience in the field of public health, specifically vector disease control. We strive to provide the most effective and scientifically sound mosquito surveillance and control programs possible based on an Integrated Mosquito Management approach recommended by the American Mosquito Control Association (AMCA) and Centers for Disease Control and Prevention (CDC). VDCI is the only company in the country that can manage all aspects of an integrated mosquito management program, from surveillance to disease testing to aerial application in emergency situations.

The 4Ds: How Your Community Can Help Prevent Mosquito Breeding and Bites

It’s common to spend time in nature to relax and reset, but silent threats like mosquitoes can make this difficult and even dangerous. One of the reasons mosquitoes so often plague our outdoor activities is because they are highly efficient at reproducing. Anywhere water collects—from a stagnant pond to a tiny puddle in the sidewalk—can become an active breeding ground for mosquitoes. Therefore, community members play a vital role in the elimination of standing water, as well as the protection of themselves and their families from vector-borne pathogens

The best way to protect yourself when spending time outdoors is to remember the 4Ds. Watch the video below to learn how to learn about personal protection and property maintenance tips:

The 4Ds: Protect Yourself from Dangerous Mosquitoes

1. DEFEND

Consistently wear and reapply an EPA-approved repellent when outdoors

  • The safest and most effective repellents should contain 10-30% DEET (N,N Diethyl-meta-toluamide). 
  • Always follow manufacturer guidelines found on the label to ensure safe and optimal product use.
  • Review the EPA’s list of registered insect repellents – www.epa.gov/insect-repellents/find-repellent-right-you   
  • Keep dogs and cats safe, too, with preventative heartworm medication.

2. DRESS

Wear closed-toe shoes, light colors, and long sleeves and pants to keep your skin protected. 

  • Mosquitoes are more attracted to darker clothing. 
  • Comfortable, loose-fitting clothes are more effective at preventing mosquito bites.
  • Bare skin on your hands, ankles, face, neck, or other areas should be protected with mosquito repellent.

3. DRAIN

Mosquitoes require standing water to reproduce. 

  • Empty and prevent future water collection in outdoor tools and objects like tires, tarps, buckets, birdbaths, basketball goals, wheelbarrows, and lawn care equipment.
  • Ensure water can drain properly from gutters, flower pots, watering cans, rain barrels, low-lying ditches, and stormwater pipes and structures.

4. DUSK & DAWN

Limit spending time outdoors when mosquitoes are most active. 

  • Mosquitoes can become dehydrated in direct sunlight. 
  • During the day, mosquitoes typically linger in cool, shaded places like thick weeds, ivy, bushes, and wood piles.

Self-protection goes hand-in-hand with public education. Integrated Mosquito Management (IMM) programs are most effective when efforts are reinforced by the surrounding community. When state, regional, and municipal entities partner with a professional management company, they get access to industry experts who regularly present and work with health departments, churches, schools, libraries, senior homes, local clubs, and other groups to ensure they receive accurate information about the mosquito species, diseases, and tools used in the area. Educational resources can be disseminated through a variety of channels to inform citizens about up-to-date news, safety warnings, and mosquito prevention reminders. 

It’s important to remember that mosquitoes are not hindered by geographical boundaries. In fact, some species can travel many miles for a blood meal. When knowledgeable citizens work together, they can have a significant impact that benefits the entire community and help maximize the results of their local integrated mosquito management program.

Contact Our Experts​

Fill out the form below or call our experts at 866.977.6964 so that they can help you develop a custom IMM program to meet your community’s needs.

VDCI_Logo_squareSince 1992, Vector Disease Control International (VDCI) has taken pride in providing municipalities, mosquito abatement districts, industrial sites, planned communities, homeowners associations, and golf courses with the tools they need to run effective mosquito control programs. We are determined to protect the public health of the communities in which we operate. Our mosquito control professionals have over 100 years of combined experience in the field of public health, specifically vector disease control. We strive to provide the most effective and scientifically sound mosquito surveillance and control programs possible based on an Integrated Mosquito Management approach recommended by the American Mosquito Control Association (AMCA) and Centers for Disease Control and Prevention (CDC). VDCI is the only company in the country that can manage all aspects of an integrated mosquito management program, from surveillance to disease testing to aerial application in emergency situations.

Behind the Scenes Look: Utilizing Technology for Successful Surveillance & Disease Testing

VDCI lab testing vial mosquito control education

Mosquito Surveillance & Disease Testing Technologies

Responsible mosquito management involves targeting mosquitoes at all stages of their lifecycle. A holistic, integrated approach is the most effective strategy to halt population growth and prevent the spread of deadly diseases while reducing environmental footprint.

surveillance and disease testing

Mosquito surveillance is the cornerstone of an integrated mosquito management (IMM) program. This begins with assessing breeding sites and eliminating mosquitoes at the larval stage. By analyzing population dynamics and species distribution, adult mosquitoes can be safely and effectively controlled. Proactive mosquito surveillance programs and data collection also allow scientists to optimize the use of insecticides and limit spraying to specific areas at precise times. These mosquito surveillance techniques reduce the chance of insecticide resistance, which can create additional challenges and expenses for stakeholders.

mosquito lab testing collecting dataHighly targeted, carefully formulated insecticides are used by experts to safely control mosquitoes and mitigate the risk of vector-borne disease transmission. Though insecticides are an impactful tool in mosquito management, it’s possible for mosquitoes to become resistant to them. According to the Centers for Disease Control and Prevention (CDC) if mortality drops to a rate of less than 90%, the mosquito population is considered insecticide resistant.

Insecticide resistance typically occurs during prolonged exposure to insecticides used during the management process. Continued use in moderately susceptible populations can result in the selection of resistant individuals and loss of insecticide sensitivity in certain areas—something that is particularly dangerous during large mosquito outbreaks following rainstorms, hurricanes, and other serious weather events. Insecticide resistance not only contributes to wasted time and resources but it also endangers communities through increased disease transmission.

mosquito lab testingThe best way to prevent insecticide resistance is ongoing mosquito surveillance and monitoring. IMM programs incorporate strategic mosquito surveillance and monitoring efforts throughout the management season to gather information about species bionomics, active periods, host preferences, and the presence of disease. This knowledge about local mosquito populations is used to determine the severity of a nuisance outbreak and inform control efforts. 

Scientists have multiple ways to collect information. Each method is selected based on the unique challenges a community is facing.

CDC Light Traps

These mosquito surveillance light traps, which were developed by the Center for Disease Control and Prevention, are considered the industry standard for mosquito surveillance and collection. Like the New Jersey light trap, it attracts many different species, but it is portable. A 6V battery powers a motorized fan that circulates carbon dioxide (CO2) as an attractant. Once they enter the mosquito surveillance trap, mosquitoes are sucked into a collection device. CDC traps are most effective when deployed at dawn and dusk when mosquitoes are most active.

BG-Sentinel Trap

This mosquito surveillance trap is designed to capture Aedes albopictus (Asian Tiger mosquito) and Aedes aegypti (Yellow Fever mosquito), each of which are known to carry diseases, including Dengue, Chikungunya, Zika virus, and Yellow Fever. Both species thrive in urban environments where they can breed in natural and artificial containers such as gutters, bird baths, watering cans, and outdoor equipment. The BG-Sentinel trap, which is made of a tarp-like material, utilizes an attractant to lure mosquitoes into a funnel. The funnel is outfitted with an electric fan that pulls them into a net where they will remain until collection.

mosquito trapsGravid Trap

Gravid traps are designed to catch Culex mosquitoes, such as Culex tarsalis or Culex pipiens. These species are capable of spreading West Nile virus, St. Louis Encephalitis, and both Western and Eastern Equine Encephalitis. Each gravid trap is filled with stagnant water containing organic matter like grass or hay to mimic natural breeding grounds. As Culex mosquitoes approach, they are sucked by an electric fan into the trap for future collection.

New Jersey Light Trap

The New Jersey light trap is effective at capturing a wide spectrum of mosquito species. It is typically used as a permanent mosquito surveillance tool that’s mounted and powered by an outlet in target areas. The New Jersey light trap is a beneficial tool to support IMM programs—it is capable of collecting large quantities of local mosquitoes for scientific analysis and data collection. 

PCR Tests 

Clinical tests are commonly used in the industry to identify mosquito-borne diseases. PCR tests, for example, allow laboratory technicians to detect different bacteria or viruses that have been transmitted by mosquitoes. Though PCR tests are also used to detect Covid-19, it’s important to note that mosquitoes do not spread the SARS-CoV-2 virus.

RAMP® WNv Tests

RAMP tests are also widely used in the industry. This highly-sensitive test is designed to detect West Nile virus in mosquitoes. A RAMP test can be conducted quickly and efficiently in-house, making it particularly useful following hurricanes and weather events.

CDC Bottle Bioassay

One of the most important tools when monitoring for insecticide resistance is the CDC Bottle Bioassay. As part of the testing process, bottles are coated with a diluted pesticide solution and then paired with a control group. Female adult mosquitoes are deposited into each bottle, where they are exposed to stressful conditions. Mortality data is then collected and analyzed by scientists for evidence of insecticide resistance. 

Larval Cup Bioassay

Larvicides are central to proactive mosquito management programs, and resistance is less common; however, it can still occur. Larval control agents work through either ingestion or contact with the target host, depending on the product used. Like the bottle bioassay process, cups are coated with bacterial larvicides like Bacillus thuringiensis israliensis (Bti), Bacillus sphaericus (Bs), or Spinosad and examined for mortality data. 

insecticide resistance - bottle assay

Modern GPS/GIS technologies have made it possible to gather large amounts of data for site mapping, disease tracking, and analysis. This information can be compared over time to identify trends or patterns that help advise the direction of management programs and ensure ongoing compliance with regulatory standards. 

Now, GPS technologies are being integrated into advanced aerial equipment. VDCI’s state of the art drones give technicians a birds-eye-view of target sites for more streamlined site surveillance and mapping, as well as more precise pesticide applications. Likewise, advanced drones allow experts to observe and treat areas that are dangerous, like swamps and wetlands, or more private, like HOAs and other large communities.

drone surveillance

Scientists have many advanced tools at their disposal for trapping, species identification, and disease testing, but the most valuable approach is preventative management. Proactive mosquito surveillance, monitoring, communication, and stakeholder education can help experts identify and quickly mitigate disease risks before a community is impacted. VDCI has the experience, necessary mosquito surveillance equipment, industry-leading technologies, and capabilities to handle all of your mosquito surveillance and disease monitoring needs.

Contact Our Experts​

Complete the form below or call 800-413-4445 to speak to an expert who can help you develop a custom mosquito surveillance and control program to meet your community’s needs.

Government Partners in Mosquito ManagementSince 1992, Vector Disease Control International (VDCI) has taken pride in providing municipalities, mosquito abatement districts, industrial sites, planned communities, homeowners associations, and golf courses with the tools they need to run effective mosquito control programs. We are determined to protect the public health of the communities in which we operate. Our mosquito control professionals have over 100 years of combined experience in the field of public health, specifically vector disease control. We strive to provide the most effective and scientifically sound mosquito surveillance and control programs possible based on an Integrated Mosquito Management approach recommended by the American Mosquito Control Association (AMCA) and Centers for Disease Control and Prevention (CDC). VDCI is the only company in the country that can manage all aspects of an integrated mosquito management program, from surveillance to disease testing to aerial application in emergency situations.

What is The IMM Advantage?

CDC Mosquito control disease monitoring

Understanding Integrated Mosquito Management

Mosquito — the eight-letter word that no one likes to hear or, even worse, be around. Community members can rely on several strategies to limit their itchy bites and thwart the pests – from insect repellents to reducing breeding habitats. However, these approaches alone will not produce lasting results or provide insights into the threat level that mosquito-borne diseases pose in your community. The safest, most effective, and long-lasting solution is prevention through a proactive and holistic Integrated Mosquito Management (IMM) program, which targets mosquitoes at all stages of their life cycle, giving your community peace of mind.

surveillance and disease testing - lab testing - mosquito control - vdci - vector management - markets served

A successful IMM program leans on both science-based tactics and educational initiatives:

CDC Mosquito control disease monitoringSurveillance & Disease Testing

Surveillance involves close observation and analysis of mosquito populations, distribution, density, and species composition throughout a targeted area. By gathering extensive data, scientists can create a customized management approach that’s designed to target mosquitoes in the right areas, at the right times, with the right product. This optimizes product use and most effectively reduces the risk of vector-borne disease.

Mosquito management strategies vary depending on their lifecycle stage. For example, mosquitoes require water to lay their eggs, and larval surveillance data allow experts to identify these habitats and treat them using biological control or EPA-registered larvicides.

The management of adult mosquitoes can be more complex. When it comes to adult mosquito surveillance, experts often utilize mosquito traps to collect, count, and identify mosquito species and determine the particular disease risk in a given area. Each mosquito species has unique host preferences, activity times, and habitat use. Certain species are also more likely to carry and transmit pathogens. Correctly identifying species and understanding their bionomics helps ensure they are managed most effectively. 

insecticide resistanceMonitoring for Insecticide Resistance

An important component of IMM programs is insecticide resistance. Monitoring for chemical resistance should begin at the start of the season and continue throughout the season. Long-term resistance data is valuable because it allows experts to identify trends and modify their mosquito management approach as needed. 

Insecticide resistance most often occurs due to overuse or overreliance on a single class of products. The continued use may reduce population sensitivity and eventually cause selection for resistant insects. Irresponsible product use by homeowners and agriculture can undermine mosquito control efforts, waste funds and resources, and increase the risk of an unmanageable disease crisis. The 2016 Zika outbreak in Miami-Dade County after Hurricane Irma illustrated the reality and danger of insecticide resistance.

Technologies Utilized in Mosquito Control

Ground Crews

Vector-control specialists rely on many types of tools and technologies to achieve mosquito control. Ground crews utilize backpack power sprayers or Ultra-Low Volume (ULV) spray trucks capable of treating highly specific areas. Equipment is specially designed and calibrated for optimal product distribution, with all data recorded in VDCI’s proprietary database. 

Aerial Fleet

Aircraft can be used to treat habitats that are difficult to access due to flooding, compromised infrastructure, or road closures. VDCI’s aerial fleet utilizes highly specialized technology and incorporates real-time meteorological data to determine optimal application efficacy.  

In addition to specialized aircraft, VDCI also utilizes state-of-the-art drones (unmanned aerial systems) that are programmed with advanced GPS technology to map target sites and ensure the precise application of liquid or granular products. Drones bridge the gap between ground and plane applications and allow for wide-area coverage of previously unreachable terrain.

drone applications for mosquito control

Public Education

Mosquito management initiatives backed by science and modern technologies can be highly effective, but a lack of public awareness can ultimately limit the success of these efforts. The role of public education in an IMM program cannot be overlooked. Not only will informed citizens better protect themselves from vector-borne diseases, but they can also assist in removing mosquito habitats and reporting areas of concern.

Public-Education-Source-Reduction-Larval-Habitats

Public education starts with establishing strategic partnerships within the community. VDCI partners with health departments, schools, churches, and other community groups to share accurate information and strategies to support city and state governments or mosquito abatement districts. Community members are taught to remember the 4 D’s:

  • Defend – Protect yourself by using an EPA-approved repellent.
  • Dress – Wear light-colored clothing, closed-toe shoes, long sleeves, and long pants when spending time outside.
  • Drain – Mosquitoes need water to complete their life cycle, and even something as small as a bottle cap can hold dozens of mosquito larvae.
  • Dusk & Dawn – Stay indoors during these times of day when mosquitoes are most active. 

There is no one solution to control mosquitoes. IMM programs are complex, customized, and ever-changing. Success is best achieved by merging surveillance and monitoring efforts with advanced knowledge and technology. And the better the community understands its role in that equation, the more favorable the outcome can be.

Contact Our Experts

Contact, or call, our experts at 866.977.6964 so that they can help you develop a custom IMM program to meet your community’s needs.

Since 1992, Vector Disease Control International (VDCI) has taken pride in providing municipalities, mosquito abatement districts, industrial sites, planned communities, homeowners associations, and golf courses with the tools they need to run effective mosquito control programs. We are determined to protect the public health of the communities in which we operate. Our mosquito control professionals have over 100 years of combined experience in the field of public health, specifically vector disease control. We strive to provide the most effective and scientifically sound mosquito surveillance and control programs possible based on an Integrated Mosquito Management approach recommended by the American Mosquito Control Association (AMCA) and Centers for Disease Control and Prevention (CDC). VDCI is the only company in the country that can manage all aspects of an integrated mosquito management program, from surveillance to disease testing to aerial application in emergency situations.

Mosquito-Borne Disease Year In Review – 2021

West-Nile-Virus-UK-spread-Europe-outbreak-1001738

While the COVID-19 pandemic has captured the attention of the world’s leading infectious disease experts, the scientific community has continued to track the transmission of mosquito-borne diseases, including West Nile, Zika, Chikungunya, Dengue, and other dangerous illnesses. As of December 14, 2021, the Center for Disease Control (CDC) reports that more than 2,400 human infections of West Nile occurred in the United States in the past year, of which 165 resulted in death. Nearly every state in the country has been affected, with  Arizona, Colorado, California, and Nebraska representing the most cases.

West Nile Virus

CDC WNV 11.30.21 This map from CDC shows West Nile virus activity across the U.S. in 2021.

As in years past, West Nile virus (WNv) continues to be the most reported and most deadly mosquito-borne disease in the United States. WNv is carried by over 150 species of mosquitoes, which usually pass the virus to humans after feeding on infected birds. Scientists have identified Culex pipiens, Culex tarsalis, and Culex quinquefasciatus as the primary vector species.

Approximately 20% of people infected with WNv experience flu-like symptoms such as nausea, headache, muscle pain, fever, and swollen lymph glands. These symptoms may also be accompanied by rashes, sleepiness, disorientation, and stiff neck. Among those infected, less than 1% will go on to develop West Nile Encephalitis or Meningitis. This can result in tremors, convulsions, paralysis, coma, and even death.

WNv transmission is cyclical in nature, with 2021 data showing a significant increase in both total cases and death:

2021: Cases
2,445 Cases
2021: Deaths
165 Deaths

This chart reflects data taken on December 14, 2021.

2020 – 28 cases in citizens returning from travel, 0 cases in U.S. territories 

2019 – 192 cases in citizens returning from travel, 2 cases in U.S. territories 

2018 – 116 cases in citizens returning from travel, 8 cases in U.S. territories 

To learn more about the symptoms, treatment, and mosquito species that vector this virus, visit our educational page on West Nile virus.

Zika Virus

CDC ZikaThis map from CDC shows Zika virus activity around the world.

Zika is a dangerous virus that primarily affects Africa and South America. Historically, U.S. citizens have become infected while traveling abroad, but warming climates have allowed the presence of Zika in the southern United States as well. Unlike other types of viruses, which require an animal reservoir host, mosquitoes are able to transmit Zika by simply feeding on the blood of an infected person. This can increase the spread very quickly during the summer months. 

In the United States, Zika is typically transmitted by Aedes aegypti, but growing evidence suggests that the Asian Tiger Mosquito (Aedes albopictus) could also be a vector. Common symptoms of infection include fever, rash, headache, joint pain, muscle pain, and Conjunctivitis (red eyes). Zika very rarely results in death; however, it can cause serious congenital disabilities when an infection occurs during pregnancy. These typically manifest as microcephaly (collapsed skull), decreased brain tissue, eye tissue damage, and joint or muscle tone complications.

After an alarming peak in 2016, when the CDC reported more than 40,000 cases in the U.S. and its territories, Zika cases have decreased to remarkable lows. This may, in part, be due to pandemic-related travel restrictions:

2021: Cases in the United States
28 Cases
2021: Returning From Travel
1 Case

This chart reflects data taken on December 14, 2021.

2020 – 4 cases in citizens returning from travel, 57 cases in U.S. territories

2019 – 27 cases in citizens returning from travel, 74 cases in U.S. territories

2018 – 73 cases in citizens returning from travel, 148 cases in U.S. territories 

To learn more about the symptoms, treatment, and mosquito species that vector this virus, visit our educational page on Zika virus.

Chikungunya Virus

CHIK-World-Map_10-30-2020This map from CDC shows Chikungunya virus activity around the world in 2020.

Chikungunya (chik-en-gun-ye) is less well-known than other mosquito-borne diseases, but has become more widespread among American citizens, most often when traveling abroad. Like Zika, Chikungunya virus can spread when mosquitoes feed on a person who is carrying the infection. Chikungunya is also primarily transmitted by Aedes mosquitoes.

Those infected with Chikungunya virus may experience painful and even disabling symptoms that appear 3-7 days after transmission. These most often include fever, severe joint pain, and rash. Death is very rare and, in fact, infected individuals tend to develop immunity from future infections.

Annual U.S. Chikungunya cases have dropped dramatically in recent years - reaching a record low in 2021. This may, in part, be due to pandemic-related travel restrictions and effective mosquito control interventions:

2021: Cases in the United States
0 Cases
2021: Returning From Travel
21 Cases

This chart reflects data taken on December 14, 2021.

2020 – 28 cases in citizens returning from travel, 0 cases in U.S. territories

2019 – 192 cases in citizens returning from travel, 2 cases in U.S. territories

2018 – 116 cases in citizens returning from travel, 8 cases in U.S. territories 

To learn more about the symptoms, treatment, and mosquito species that vector this virus, visit our educational page on Chikungunya.2018 – 116 cases in citizens returning from travel, 8 cases in U.S. territories.

Dengue Virus

DengueThis map from CDC shows Dengue activity across the U.S. in 2021.

While many people think of Dengue as a disease we don’t need to worry about in the United States, mosquitoes capable of transmitting this virus are abundant in many areas of the country and quickly expanding their range.  Characteristic symptoms of dengue include high fever, rash, in addition to muscle and joint pain. In severe cases there can be serious bleeding or shock, which is life threatening.

In 2021 there were 86 human cases of Dengue diagnosed in 23 states across the continental United States.

To learn more about the symptoms, treatment, and mosquito species that vector this virus, visit our educational page on Dengue.

0
Human Cases (2021)
0
States Affected Across the U.S. (2021)

Monitoring Real-Time U.S. Mosquito-Borne Disease Activity

The key to limiting the spread of mosquito-borne diseases is monitoring and prevention. Municipalities and mosquito abatement districts often execute Integrated Mosquito Management (IMM) programs to help protect communities, but private citizens can support these efforts and empower themselves with disease tracking tools like the CDC’s ArboNet map. The map provides a live overview of reported mosquito activity and the most common vector-borne diseases, including:

  • West Nile Virus (WNV)
  • St. Louis Encephalitis (SLE)
  • Eastern Equine Encephalitis (EEE)
  • La Crosse (LAC)
  • Dengue (DEN) locally-acquired and travel-associated
  • Chikungunya (CHIK) locally-acquired and travel-associated
  • Zika Virus (ZIKA) locally-acquired and travel-associated
  • Powassan Virus (a tick-borne disease)

*ArboNet is designed to reflect real-time information, but there are times when it may not be in sync. This resource is easy to navigate and can be sorted by disease type, state, and year.

Public Education in Reducing Mosquito Populations 2 bugspray mosquito prevention health and safetyIn addition to staying informed about the risks posed by mosquitoes in your community, it’s important to observe any travel warnings issued by the CDC, particularly when pregnant. It’s also essential to exercise personal protection measures like wearing insect repellent and exercising best practices around your property to reduce mosquito reproduction.

VDCI is committed to public education and spreading awareness throughout the U.S. about the dangers of mosquito-borne diseases and their preventability, with the overarching goal of reducing illness and fatalities. Our dedicated and experienced team works tirelessly with local governments to prevent the spread of mosquito-borne diseases in all of the contracts we service from coast to coast.

VDCI Wants To Make Your Community Safer. How Can We Help?

Speak to an expert about implementing an IMM program.

Fill out the information below, and one of our experts will follow up with you shortly.

Since 1992, Vector Disease Control International (VDCI) has taken pride in providing municipalities, mosquito abatement districts, industrial sites, planned communities, homeowners associations, and golf courses with the tools they need to run effective mosquito control programs. We are determined to protect the public health of the communities in which we operate. Our mosquito control professionals have over 100 years of combined experience in the field of public health, specifically vector disease control. We strive to provide the most effective and scientifically sound mosquito surveillance and control programs possible based on an Integrated Mosquito Management approach recommended by the American Mosquito Control Association (AMCA) and Centers for Disease Control and Prevention (CDC). VDCI is the only company in the country that can manage all aspects of an integrated mosquito management program, from surveillance to disease testing to aerial application in emergency situations.