Debunking Myths: Bats for Effective Mosquito Control

Eastern Small Footed Bat

Debunking Myths: Bats for Effective Mosquito Control

Written by:
Michael “Doc” Weissmann, Ph.D., VDCI Entomologist

Co-Written by:
Dr. Louise Lynch-O’Brien of the University of Nebraska at Lincoln

Though mosquitoes are considered the most dangerous species in the world, they are more widely known as one of the most annoying. For thousands of years, humans have sought out solutions and techniques to thwart mosquitoes when spending time outdoors – some effective, some not. While modern scientific advancements have provided us the tools and knowledge to manage mosquitoes more safely and effectively than ever before, dozens of old wives’ tales still persist. One of the most common misconceptions centers around bats.

Bats can consume up to 1,000 mosquitoes in an hour, right? This “fact” is often presented as a primary reason to promote bat conservation. In more extreme instances, some activists claim that installing bat boxes in a neighborhood will lead to successful mosquito control and prevent people from contracting mosquito-borne illnesses like West Nile virus.

Eastern Small Footed BatThe claim likely originated from a study published in 1960 about how certain bats use echolocation to detect and capture small insects (Griffin et al. 1960). As part of the study, Donald Griffin and colleagues at Harvard University photographed little brown bats (Myotis lucifugus) and Eastern small-footed bats (M. leibii) preying on mosquitos (Culex quinquefasciatus) placed together in a room measuring (2.44 m. wide by 4.88 m. long by 2.44 m. tall (8 ft. wide by 16 ft. long by 8 ft. high). Only a small fraction of the bats (less than 10%) demonstrated prey capture behavior when released into the room that initially contained approximately 2000 mosquitoes, but the study focused on these “good catchers.” Again, this was a study on prey capture technique, not prey quantity.

Based on the amount of weight gained by the bats during each trial, the researchers estimated the number of mosquitoes consumed on average during that period. The study began with 2,000 mosquitoes for the initial trial, but they were not able to replenish the mosquito population to that same level during subsequent trials. The “champion catcher” was an individual M. leibii that was recorded to consume an average of 9.5 mosquitoes per minute during the 15-minute trial. It is summarized in the paper with the statement, “This bat was thus catching about ten mosquitoes per minute or one every six seconds.” Note that this was the highest rate recorded during the study, with all other capture rates being significantly less.

Since that publication, others have quoted this statement out of context, and used it to extrapolate numbers to greater time periods. Ten mosquitoes per minute becomes 600 mosquitoes in an hour. Just as the 9.5 mosquitoes per minute was rounded to 10, the 600 mosquitoes per hour is usually generously rounded up to 1000. Over an 8-hour mid-summer night, that would be 8,000 mosquitoes per night, or more than 2.9 million mosquitoes in a year, or nearly 117 million mosquitoes over a 40-year lifespan – just for one bat! Very impressive.

Is this kind of extrapolation justified? It assumes that the “champion catcher” rate of consumption is 1) true for all bats; 2) maintained for a full hour (or for the full evening, week, month, year, lifetime); and 3) no other insects are consumed except mosquitoes. The original study placed the bats in a room with only mosquitoes to feed on and nothing else. It has been demonstrated that some species of bats do consume mosquitoes as part of their diet (for example, Wray et al. 2018). However, bats tend to be generalist and opportunistic predators, feeding on a wide variety of nocturnal insects as available at different times of year and different times during a single evening. Optimal foraging strategy suggests that bats would prefer larger insects like beetles and moths that provide more dietary value for the predatory effort (“more bug for the buck”). Except in circumstances where mosquitoes are temporally and locally extremely abundant, they are likely to comprise only a small fraction of a bat’s caloric intake on a typical night of foraging.

Bats are important predators, valuable to humans for their role in reducing agricultural pest populations. Boyles et al. (2011) estimate the annual benefit of bat predation to North American agriculture at more than US$3.7 billion, based on consumption of crop pest species (a value that should be quoted with caution, of course, since that dollar figure is itself an extrapolation, based on the per-acre value of cotton in Texas!). However, studies confirming bats’ importance in mosquito control are limited, and the “1000 mosquitoes per hour” claim is not likely to be true under natural conditions.

Luckily, there are much more impactful ways to prevent the spread of mosquito-borne diseases. Integrated Mosquito Management (IMM) programs are designed to proactively target mosquitoes at every stage of their lifecycle using professional surveillance and disease testing, population monitoring, larviciding, and adulticiding. These science-backed actions are supported by public education initiatives that empower community members to wear EPA-registered repellents and clothing that covers their bare skin, drain standing water where mosquitoes breed, and stay indoors during dusk and dawn when mosquitoes are most active.

Seeing bats swooping around in the evening does not mean you’re being defended, but they can serve as an important reminder to continue practicing responsible mosquito prevention efforts that protect ourselves and our communities.

Boyles, J.G., Cryan, P.M., McCracken, G.F., & Kunz, T.H. (2011). Economic importance of bats in agriculture. Science, 332 (6025): 41-42.

Griffin, D.R., Webster, F.A., & Michael, C.R. (1960). The echolocation of flying insects by bats. Animal Behaviour, 8 (3-4): 141-154.

Wray, A.K, Jusino, M.A., Banik, M.T., Palmer, J.M., Kaarakka, H., White, J.P., Lindner, D.L., Gratton, C., & Peery, M.Z. (2018). Incidence and taxonomic richness of mosquitoes in the diets of little brown and big brown bats. Journal of Mammalogy, 99 (3): 668-674.­

Contact Us to Learn More About Effective Mosquito Prevention Strategies

VDCI_Logo_square Since 1992, Vector Disease Control International (VDCI) has taken pride in providing municipalities, mosquito abatement districts, industrial sites, planned communities, homeowners associations, and golf courses with the tools they need to run effective mosquito control programs. We are determined to protect the public health of the communities in which we operate. Our mosquito control professionals have over 100 years of combined experience in the field of public health, specifically vector disease control. We strive to provide the most effective and scientifically sound mosquito surveillance and control programs possible based on an Integrated Mosquito Management approach recommended by the American Mosquito Control Association (AMCA) and Centers for Disease Control and Prevention (CDC). VDCI is the only company in the country that can manage all aspects of an integrated mosquito management program, from surveillance to disease testing to aerial application in emergency situations.

Myths & Misconceptions: Do These Mosquito Prevention Products and Strategies Work?

mosquito-born diseases webinar

Myths & Misconceptions: Do These Mosquito Prevention Products and Strategies Work?

We’ve all experienced aggravating mosquito bites when spending time outdoors, and for most people, they’re nothing more than a nuisance. And many of us have heard about outbreaks of West Nile Virus, Dengue, Eastern Equine Encephalitis, and other diseases, but may have dismissed the risk of contracting them as extremely rare. These are dangerous misunderstandings; mosquitoes kill more than one million people each year, making them the deadliest species in the world. 

Protecting ourselves from mosquito bites is essential to the well-being of our communities, but unfortunately, there are many myths and misconceptions about popular mosquito deterrents. VDCI is committed to educating the public on the safety and efficacy of common mosquito prevention tools – and supporting communities, state agencies, and mosquito-abatement districts with science-backed solutions and management strategies. 

Common mosquito prevention myths and misconceptions

bug zapperBug zappers – There’s a common belief that bug zappers attract and electrocute mosquitoes using ultraviolet lights or black lights. In fact, more than two million homeowners turn to bug zappers for mosquito management around their properties. In reality, research indicates that mosquitoes comprise only 6% of the bugs killed and these devices are actually detrimental to beneficial insects including moths and beetles. These devices do not work to reduce host-seeking mosquitoes, because females in search of a bloodmeal are most attracted to carbon dioxide expelled by humans and animals when they breathe.

Misting sprays – Private misting systems have become a popular solution marketed by companies that are not licensed in public health. This means that the spray products they use do not have to be registered with the Environmental Protection Agency (EPA). While the products are capable of killing mosquitoes, this approach can be harmful to the environment and may result in unnecessary exposure to people. When insecticides are sprayed in unnecessary amounts or intervals, mosquitoes can become resilient to them over time. Improperly applied insecticides can also harm non-target insects that are beneficial to the environment. The American Mosquito Control Association (AMCA) has taken a stance against these misting systems until there has been more research and efficacy testing done.

Bats – While they do feed on insects, fecal studies suggest that mosquitoes make up less than 1% of a typical bat’s diet. Attracting them with bat houses can certainly help reduce moths, beetles, and leafhoppers, which are favored food sources, but will have no significant impact on mosquito populations. Furthermore, some bat species may actually pose risks to humans, particularly when they’re able to roost near attics and other living areas. Bat droppings (guano) are capable of producing spores that cause a harmful respiratory disease when inhaled. They can also carry parasites and viruses like rabies. According to the Centers for Disease Control and Prevention (CDC), bats are the leading cause of rabies deaths in the United States. 

Integrated Mosquito Management

The safest and most effective mosquito management solutions are backed by science and executed as part of an Integrated Mosquito Management (IMM) program. IMM programs provide solutions that target mosquitoes at every stage of their lifecycle. And diligent monitoring and surveillance efforts ensure diseases, population changes, and signs of insecticide resistance are identified as soon as possible. When adult populations reach unacceptable or dangerous levels, then insecticides that are registered with the EPA should only be applied by licensed professionals in appropriate amounts, in the right places, and at the right times.

Proactive science-backed solutions are most effective when supported by knowledgeable citizens. VDCI partners with municipalities, mosquito abatement districts, and public health organizations to disseminate educational resources that bust myths and misconceptions about mosquito management and arm people with essential mosquito prevention tips to help them limit breeding habitats on their property and protect themselves from bites – because everyone deserves peace of mind while enjoying the outdoors.

Contact Us to Learn More About Effective Mosquito Prevention Strategies

VDCI_Logo_square Since 1992, Vector Disease Control International (VDCI) has taken pride in providing municipalities, mosquito abatement districts, industrial sites, planned communities, homeowners associations, and golf courses with the tools they need to run effective mosquito control programs. We are determined to protect the public health of the communities in which we operate. Our mosquito control professionals have over 100 years of combined experience in the field of public health, specifically vector disease control. We strive to provide the most effective and scientifically sound mosquito surveillance and control programs possible based on an Integrated Mosquito Management approach recommended by the American Mosquito Control Association (AMCA) and Centers for Disease Control and Prevention (CDC). VDCI is the only company in the country that can manage all aspects of an integrated mosquito management program, from surveillance to disease testing to aerial application in emergency situations.

Public Education Programs for Mosquito Control in the United States 1982 to the Present

PublicEducation_OH

by Broox Boze Ph.D., VDCI Director of Technical Services

Published in Wing Beats, Florida Mosquito Control Association

In 1979 the American Mosquito Control Association (AMCA) adopted a policy statement indicating that “methods for mosquito control should be chosen after careful consideration of the efficacy, ecological effects, and costs versus benefits of the various options, including public education, legal action, natural and biological control, elimination of breeding sources, and insecticide application.” Within a few years, a membership survey was conducted to analyze public education programs implemented by our members and found that 60% of respondents rated public education as “more important” than or “equally important” as chemical, biological, or physical control.”  However, survey respondents reported that only 1.7% of their budget was allocated for public education and an average of 30% was allocated for chemical, biological, and physical control (Beams, 1985).

AMCA’s general membership survey, conducted in 2020, indicated that a “lack of public understanding or support of mosquito control” was identified as the number one element having an impact on our profession in the next three years. “Increasing and improving public outreach” was also listed as our membership’s number one priority (Association Laboratories, 2020).

AMCA survey participantsTo examine the state of current public education programs within mosquito control agencies across the United States, we modified Beams 1985 survey and distributed it to 178 agencies across 38 states. Participants were selected for inclusion based on criteria established in the original design (Beams, 1985): inclusion of all geographic regions, and listing in the American Mosquito Control’s Directory of Mosquito Control Agencies (Challet and Keller, 1981). A total of 133 agencies completed the survey (74.7% response rate) with a relatively equal distribution across regions (Figure 1) and agency size across time (Figure 2).

AMCA survey participants

The survey results support an increased focus on public education within mosquito control and note a 10% increase in the number of agencies ranking public education as “more important” or “equally important” than chemical, biological or physical control (Figure 3) in addition to documenting a 300% increase in budget allocation from 1.7% to 5.19% of total operating expenses.

Despite the increased emphasis on public education as a leading component of Integrated Mosquito Management (IMM) there was little to no change in the number of agencies that make mosquito/vector control information (brochures, leaflets, pamphlets) available to the public (86% in 1982, 85% in 2022), the number of agencies making educational presentations available to the community (85% in 1982, 88% in 2022), or the use of press releases to local new agencies (83% in 1982, 86.5% in 2022).  There was also a decrease in agencies offering facility tours to the public (71% in 1982, 58% in 2022) and regular coverage of agency activities on local news sources (45% in 1982, 38% in 2022).  There has been no change in the number of districts that rank their public education programs as either excellent or good (34% in 1982, 34.5% in 2022) when presented with the following options: excellent, good, fair, poor, variable, and no opinion.

staff responsibility mosquito control public educationOne of the biggest changes identified with public education programs is the organizational level at which responsibilities principally fall (Figure 4). Forty-seven percent of agencies report that their manager/director is primarily responsible for educational activities within their jurisdiction, down from 53% in 1982.  Despite the small change in responsibility for managers/directors, the number of agencies relying on biologists/entomologists for educational outreach decreased from 34% in 1982 to only 9% in 2022. The number of agencies with a specialist focused primarily on education increased from only 8% in 1982 to 34% in 2022, which suggests an increased understanding of the unique skills needed for educational outreach and public relations.

 The agencies surveyed in this study are public, tax-supported organizations with limited funds and the responsibility for protecting public health through management of mosquitoes in a fiscally responsible way. As a data-driven industry, the use of chemical pesticides to control mosquitoes gives rapid, noticeable, and quantifiable results that can be documented with standardized surveillance strategies.  As both the staff and budget allocated toward public education activities continues to increase, we should consider assessment strategies to document their efficacy and usefulness within the IMM framework.  Current strategies for gauging the success of public education activities include measuring the number of people reached via social media (clicks/likes/shares) and the number of outreach events held. However, surveillance data (trap counts/landing rates/service requests), public acceptance, behavioral change (container/house/breteau index), and learning/knowledge evaluations should also be a part of gauging success like the other components of IMM.  Unfortunately, the majority of mosquito control agencies are not using these measurable tools to document the success of their efforts (Figure 5) and only a small fraction of our community is utilizing surveillance-based data or behavioral change to document their public outreach impacts on protecting public health.  
 
agencies using public education assessment tools

As AMCA works to build a national campaign and reduce the lack of understanding regarding mosquito control, we must remember that Integrated Mosquito Management involves careful consideration of the efficacy, ecological effects, and costs versus benefits of the various options, including public education, legal action, natural and biological control, elimination of breeding sources, and insecticide application. While most respondents (98.2%) focus on personal protective measures (including the use of repellent, avoiding certain times of day, and dressing appropriately), the focus on the other pieces of IMM which are essential to scientifically sound operations is markedly lower. Only 40.6% of agencies put any effort into highlighting surveillance data, 66.1% focus on disease activity and 56.3% focus on larval control suggesting that our industry has room for improvement when it comes to communicating with the public. Wide area applications for controlling adult mosquitoes continue to be scrutinized and it is not surprising to see that only 30.8% of agencies focus on the science behind these intervention strategies.  Less than 25% of respondents spend any time discussing environmental impact, insecticide resistance, biocontrol, or new technologies (Figure 6) which help to ensure the safe and effective use of our limited tools.

components of IMM agency focus

Both CDC and EPA acknowledge chemical control as a component of IMM and necessary tool for reducing the risk of transmission when pathogens are found in adult mosquitoes (Connelly et al., 2020). In areas where sheer number of mosquitoes create quality of life issues, adult mosquito control is not only required, but desired by the public. However, AMCA members often shy away from discussing this important component of IMM due to concerns of backlash from non-governmental organizations and/or anti-pesticide advocacy groups. The best way to counter these concerns is to demonstrate the solid science behind the use of these technologies. Failure to do so allows special interest groups to tell, and frame, the story in a way that may not acknowledge the science behind our efforts and causes a disservice to public health.

Mosquito Control public outreach should discuss ALL of the components of IMM, and the AMCA Public Relations Committee looks forward to developing messages to make this happen.

Contact Us to Learn More About Mosquito Management Public Education

VDCI_Logo_squareSince 1992, Vector Disease Control International (VDCI) has taken pride in providing municipalities, mosquito abatement districts, industrial sites, planned communities, homeowners associations, and golf courses with the tools they need to run effective mosquito control programs. We are determined to protect the public health of the communities in which we operate. Our mosquito control professionals have over 100 years of combined experience in the field of public health, specifically vector disease control. We strive to provide the most effective and scientifically sound mosquito surveillance and control programs possible based on an Integrated Mosquito Management approach recommended by the American Mosquito Control Association (AMCA) and Centers for Disease Control and Prevention (CDC). VDCI is the only company in the country that can manage all aspects of an integrated mosquito management program, from surveillance to disease testing to aerial application in emergency situations.

Building an Emergency Response Plan

Hurricane wreckage

Building An Emergency Response Plan

Mosquitoes are a continual threat we face each year, and in some areas, they pose a danger all year round. The risk of exposure to mosquitoes can increase exponentially following hurricanes, violent rainstorms, and other natural disasters that leave moisture and standing water—ideal mosquito habitat—in their wake. Emergency response must be swift in order to interrupt breeding activities before mosquito populations surge, but preparing an emergency response plan at the last hour can be detrimental to a community by wasting time, funds, and resources. Developing a response plan for your state or municipality ahead of emergencies will help ensure all the bases are covered when emergencies ensue.

A female mosquito can lay up to 200 eggs in a source of standing water, sometimes as small as a puddle or bottle cap. Following a storm, entire communities can serve as a breeding ground for multiple mosquito species, which can peak over the course of several days and weeks. Vector-disease control companies with a focus on protecting public health are equipped with the tools and knowledge to help communities evaluate the risks they may face following a natural disaster and can customize a preparation plan to mitigate explosions of pest mosquito populations as well as the spread of deadly diseases like Zika, Dengue, West Nile Virus, and Yellow Fever during these times of crisis. OCIAL

When building effective emergency response plans, VDCI’s ground crews and pilots start by mapping the physical characteristics of the region to identify areas of vulnerability and potential inaccessibility, as well as zones that should be excluded from mosquito treatments due to the presence of endangered species. This information is collected in accordance with requirements set forth by the Environmental Protection Agency (EPA), Centers for Disease Control (CDC), and the Federal Emergency Management Agency (FEMA).

VDCI then conducts monitoring and surveillance in target zones to assess local mosquito populations, species dynamics, and disease presence. During this process, experts utilize different types of specialized traps, laboratory tests, and GIS/GPS technologies like state-of-the-art drones to uncover potential trends or patterns in mosquito activity. This comprehensive data is used to establish a baseline that informs every management choice when an emergency occurs, from the types of products used to the frequency of applications. Licensed companies also collaborate with state and federal agencies, local health departments, and media groups to educate community members about mosquito prevention and personal protection strategies.  

When potential weather emergencies are expected, our experts closely monitor the progression of the storm or hurricane and ensure our aerial and ground fleets are poised to deploy at any time. This preparation includes conducting final inspections of aircraft and  servicing loading trucks, communicating with the Federal Aviation Administration (FAA), bringing in pesticides and advanced equipment, and setting up a home base from which scientists, pilots, and ground crews can safely operate.  

Once authorized by local authorities, VDCI can take immediate action to apply Ultra Low Volume pesticides that have been EPA-registered for public health use. The primary delivery method is by aircraft; a single plane can treat an average of 30,000 acres in a single evening without obstruction by damaged roads, flooding, downed trees, or other wreckage. However, ground crews can be used to tackle areas where aerial applications may not be suitable. Ground crews are capable of covering roughly 3,000 acres in a single evening with Ultra Low Volume pesticides, which have been tested and do not pose a significant risk to humans or non-target insects per the Centers for Disease Control and Prevention (CDC).

Once a mission is complete, project responsibilities are not over. VDCI continues trapping and laboratory analysis efforts to measure the success of applications and determine if the mosquito populations have been adequately minimized. This information is then reported to authorities and stakeholders to ensure their goals have been achieved—with the ultimate goal of protecting the public and relief workers as they work to restore power, clear roads, manage flooding, rebuild infrastructure, and aid displaced homeowners. 

Trends indicate that natural disasters are becoming more frequent and intense. The most responsible and effective way for states and local governments to protect their communities is through proactive planning with an experienced vector-disease control company. With a detailed plan in place, communities can focus exclusively on critical restoration efforts that must take place after deadly storms, rather than the often overlooked threat of deadly diseases.

Download the VDCI Emergency Response Informative Guide

Torrential rainstorms, hurricanes, flooding, and other weather events are often followed by a rise in local mosquito populations that can persist for weeks or months, often interfering with recovery efforts.  Learn the importance of post-disaster mosquito management and how to create an emergency response plan to aid recovery efforts in your community so that you can help protect your community after a natural disaster. Prepare now, be protected later.

Download The VDCI Emergency Response Guide

Browse and Download Our FREE Educational Guides Today! 

Our Experience/Qualifications

For more than 20 years, Vector Disease Control International (VDCI) has aided mosquito control and recovery efforts following natural disasters. Starting with Hurricane Bonnie in 1998, VDCI’s emergency response team has supported communities and abatement districts in protecting relief workers and displaced members of the public. 

Our team can help your community create an emergency response contingency plan for mosquito control efforts after a hurricane, major flood event, or increased disease activity. 

Does your community have an emergency response contingency plan in place for mosquito control? If not, contact us today or call 800.413.4445  to learn more about how we can help you prepare for the unexpected.

Contact Us Today to Learn How You Can Build an Emergency Response Plan for Your Community

VDCI_Logo_squareSince 1992, Vector Disease Control International (VDCI) has taken pride in providing municipalities, mosquito abatement districts, industrial sites, planned communities, homeowners associations, and golf courses with the tools they need to run effective mosquito control programs. We are determined to protect the public health of the communities in which we operate. Our mosquito control professionals have over 100 years of combined experience in the field of public health, specifically vector disease control. We strive to provide the most effective and scientifically sound mosquito surveillance and control programs possible based on an Integrated Mosquito Management approach recommended by the American Mosquito Control Association (AMCA) and Centers for Disease Control and Prevention (CDC). VDCI is the only company in the country that can manage all aspects of an integrated mosquito management program, from surveillance to disease testing to aerial application in emergency situations.

Mosquito Problems You Can Expect After a Major Storm

Mosquito management

Rainstorms, floods, and hurricanes not only cripple infrastructure, they also result in excess moisture and standing water causing mosquito populations to increase aggressively. Read about the mosquito problems that you can except after a major storm and how VDCI can help communities reduce associated risks.

Continue reading

Adult Mosquito Control Best-Practices: ULV Explained

Adult Mosquito Control

Adult Mosquito Control Best-Practices: ULV Explained

Mosquito populations can get out of hand very quickly. Even in small numbers, mosquitoes can endanger communities by spreading infectious diseases like West Nile virus, Zika, and Yellow Fever. Through professional Integrated Mosquito Management (IMM) programs, experts are able to monitor population levels and take action when thresholds are surpassed. Often, this means applying EPA-registered adulticides through ULV spraying to keep mosquitoes in check. These products are an essential part of an environmentally-friendly Integrated Mosquito Management (IMM) program and offer an effective and low-risk solution to helping manage nuisance mosquito populations.

What is ULV Spraying?​

ULV stands for ultra-low volume sprays. When applied with ULV equipment via truck, backpack foggers, or plane, adulticides remain suspended in the air as fine aerosol droplets. These droplets kill mosquitoes on contact as they fly through the target area. A primary benefit of ULV sprays is adulticide optimization. Very little product is necessary to treat large areas of land, typically less than one ounce per acre. 

 

Adult Mosquito Control

Numerous, peer-reviewed, articles indicate that ULV applications for mosquito control do not pose a significant risk to humans or non-target insects.  In one study (Effects of single and multiple applications of mosquito insecticides on non target arthropods, Davis and Peterson, 2008), the researchers determined that “measurable and persistent biological effects on non-target arthropods, exposed to larvicides and adulticides applied via ULV sprayer would be small.   Also in an article published by the CDC (Human Exposure to Mosquito-Control Pesticides — Mississippi, North Carolina, and Virginia, 2005), the researchers measured the pesticide metabolite concentrations in urine of people pre-and post- application.  And it was determined that “ULV application in mosquito control activities did not result in substantial pesticide exposure to humans”.  In contrast, they were able to show an “association between home and/or work application of pesticides and pesticide metabolite concentrations”. In other words, individuals are far more likely to have pesticide exposure from home and work-related uses of pesticides than from ULV mosquito control efforts. 

In another study (A Human-Health Risk Assessment for West Nile Virus and Insecticides Used in Mosquito Management, Peterson et al., 2006), the researchers state, “Results from our risk assessment and the current weight of scientific evidence indicate that human-health risks from residential exposure to mosquito insecticides are low and are not likely to exceed levels of concern. Further, our results indicate that, based on human health criteria, the risks from WNV exceed the risks from exposure to mosquito insecticides.” This work is extremely important, as they were able to determine that the risk of adverse health impacts from contracting WNV is greater than the risk of health impacts from the pesticides used to control WNV vectors.  This is just a small sample of the published scientific literature regarding the potential harmful effects of our mosquito control applications.

ULV Spraying as Part of a Professional IMM Program

Adulticides are an effective and necessary tool to combat mosquito populations. When applied as part of an IMM program, the products are also utilized alongside other important strategies, including larval control, public education, and surveillance and disease testing. These solutions help make adulticide applications more impactful while supporting more long-lasting results.

Professionals lean on the data compiled during surveillance and disease testing to inform their decision to intervene. Surveillance data is gathered through weekly trapping, and different types of traps can be used depending on the species that are being monitored. Once collected, each mosquito is identified and examined for disease. Understanding the unique species bionomics and disease threat helps professionals determine ULV spraying needs. Using science allows professionals to spray the right amount, at the right place, at the right time.

During the application process, GPS technologies play an important role. GPS tracking units create spray maps to help ensure even product coverage. This information can also be shared with the public. For successful control in large communities, ULV spray applications may be paired with residual “barrier” treatments via backpack applicators near homes and areas where mosquitoes tend to concentrate. Trucks and aerial equipment can also be used to target adult mosquitoes across large areas of land. 

Mosquito Control, Adulticides, Integrated Mosquito Management (IMM) programs

VDCI Utilizes ULV Spraying - mosquito abatement programs

When used as part of a comprehensive Integrated Mosquito Management program, ULV spraying is a necessary and highly effective solution for reestablishing populations to more manageable levels. These tools and solutions can provide more long-lasting protection and reduce the risk of insecticide resistance. VDCI is committed to choosing strategies that support our goal to protect people, preserve the environment, and maximize the impact of our essential adulticide products. 

We own and operate the nation’s most robust fleet of spray trucks, backpack sprayers, and aircraft dedicated to mosquito management and prevention. State entities, municipalities, and other community groups can rest assured that all equipment is properly calibrated and maintained to dispense proper droplet sizes at appropriate rates to achieve the highest level of mosquito control possible.

Contact Our Experts​​

Fill out the form below or call our experts at 866.977.6964 so that they can help you develop a custom IMM program to meet your community’s needs.

VDCI_Logo_squareSince 1992, Vector Disease Control International (VDCI) has taken pride in providing municipalities, mosquito abatement districts, industrial sites, planned communities, homeowners associations, and golf courses with the tools they need to run effective mosquito control programs. We are determined to protect the public health of the communities in which we operate. Our mosquito control professionals have over 100 years of combined experience in the field of public health, specifically vector disease control. We strive to provide the most effective and scientifically sound mosquito surveillance and control programs possible based on an Integrated Mosquito Management approach recommended by the American Mosquito Control Association (AMCA) and Centers for Disease Control and Prevention (CDC). VDCI is the only company in the country that can manage all aspects of an integrated mosquito management program, from surveillance to disease testing to aerial application in emergency situations.

The 4Ds: How Your Community Can Help Prevent Mosquito Breeding and Bites

The 4Ds: How Your Community Can Help Prevent Mosquito Breeding and Bites

It’s common to spend time in nature to relax and reset, but silent threats like mosquitoes can make this difficult and even dangerous. One of the reasons mosquitoes so often plague our outdoor activities is because they are highly efficient at reproducing. Anywhere water collects—from a stagnant pond to a tiny puddle in the sidewalk—can become an active breeding ground for mosquitoes. Therefore, community members play a vital role in the elimination of standing water, as well as the protection of themselves and their families from vector-borne pathogens

The best way to protect yourself when spending time outdoors is remembering the 4Ds:

1. DEFEND

Consistently wear and reapply an EPA-approved repellent when outdoors

  • The safest and most effective repellents should contain 10-30% DEET (N,N Diethyl-meta-toluamide). 
  • Always follow manufacturer guidelines found on the label to ensure safe and optimal product use.
  • Review the EPA’s list of registered insect repellents – www.epa.gov/insect-repellents/find-repellent-right-you   
  • Keep dogs and cats safe, too, with preventative heartworm medication.

2. DRESS

Wear closed-toe shoes, light colors, and long sleeves and pants to keep your skin protected. 

  • Mosquitoes are more attracted to darker clothing. 
  • Comfortable, loose-fitting clothes are more effective at preventing mosquito bites.
  • Bare skin on your hands, ankles, face, neck, or other areas should be protected with mosquito repellent.

3. DRAIN

Mosquitoes require standing water to reproduce. 

  • Empty and prevent future water collection in outdoor tools and objects like tires, tarps, buckets, birdbaths, basketball goals, wheelbarrows, and lawn care equipment.
  • Ensure water can drain properly from gutters, flower pots, watering cans, rain barrels, low-lying ditches, and stormwater pipes and structures.

4. DUSK & DAWN

Limit spending time outdoors when mosquitoes are most active. 

  • Mosquitoes can become dehydrated in direct sunlight. 
  • During the day, mosquitoes typically linger in cool, shaded places like thick weeds, ivy, bushes, and wood piles.

Self-protection goes hand-in-hand with public education. Integrated Mosquito Management (IMM) programs are most effective when efforts are reinforced by the surrounding community. When state, regional, and municipal entities partner with a professional management company, they get access to industry experts who regularly present and work with health departments, churches, schools, libraries, senior homes, local clubs, and other groups to ensure they receive accurate information about the mosquito species, diseases, and tools used in the area. Educational resources can be disseminated through a variety of channels to inform citizens about up-to-date news, safety warnings, and mosquito prevention reminders. 

It’s important to remember that mosquitoes are not hindered by geographical boundaries. In fact, some species can travel many miles for a blood meal. When knowledgeable citizens work together, they can have a significant impact that benefits the entire community and help maximize the results of their local integrated mosquito management program.

Contact Our Experts​

Fill out the form below or call our experts at 866.977.6964 so that they can help you develop a custom IMM program to meet your community’s needs.

VDCI_Logo_squareSince 1992, Vector Disease Control International (VDCI) has taken pride in providing municipalities, mosquito abatement districts, industrial sites, planned communities, homeowners associations, and golf courses with the tools they need to run effective mosquito control programs. We are determined to protect the public health of the communities in which we operate. Our mosquito control professionals have over 100 years of combined experience in the field of public health, specifically vector disease control. We strive to provide the most effective and scientifically sound mosquito surveillance and control programs possible based on an Integrated Mosquito Management approach recommended by the American Mosquito Control Association (AMCA) and Centers for Disease Control and Prevention (CDC). VDCI is the only company in the country that can manage all aspects of an integrated mosquito management program, from surveillance to disease testing to aerial application in emergency situations.

Behind the Scenes Look: Utilizing Technology for Successful Surveillance & Disease Testing

VDCI lab testing vial mosquito control education

Behind the Scenes Look: Utilizing Technology for Successful Surveillance & Disease Testing

Responsible mosquito management involves targeting mosquitoes at all stages of their lifecycle. A holistic, integrated approach is the most effective strategy to halt population growth and prevent the spread of deadly diseases while reducing environmental footprint.

surveillance and disease testing

Surveillance is the cornerstone of an integrated mosquito management (IMM) program. This begins with assessing breeding sites and eliminating mosquitoes at the larval stage. By analyzing population dynamics and species distribution, adult mosquitoes can be safely and effectively controlled. Proactive surveillance and data collection also allow scientists to optimize the use of insecticides and limit spraying to specific areas at precise times. These techniques reduce the chance of insecticide resistance, which can create additional challenges and expenses for stakeholders.

mosquito lab testing collecting dataHighly targeted, carefully formulated insecticides are used by experts to safely control mosquitoes and mitigate the risk of vector-borne disease transmission. Though insecticides are an impactful tool in mosquito management, it’s possible for mosquitoes to become resistant to them. According to the Centers for Disease Control and Prevention (CDC) if mortality drops to a rate of less than 90%, the mosquito population is considered insecticide resistant.

Insecticide resistance typically occurs during prolonged exposure to insecticides used during the management process. Continued use in moderately susceptible populations can result in the selection of resistant individuals and loss of insecticide sensitivity in certain areas—something that is particularly dangerous during large mosquito outbreaks following rainstorms, hurricanes, and other serious weather events. Insecticide resistance not only contributes to wasted time and resources but it also endangers communities through increased disease transmission.

mosquito lab testingThe best way to prevent insecticide resistance is ongoing monitoring. IMM programs incorporate strategic monitoring efforts throughout the management season to gather information about species bionomics, active periods, host preferences, and the presence of disease. This knowledge about local mosquito populations is used to determine the severity of a nuisance outbreak and inform control efforts. 

Scientists have multiple ways to collect information. Each method is selected based on the unique challenges a community is facing.

mosquito trapsCDC Light Traps

These light traps, which were developed by the Center for Disease Control and Prevention, are considered the industry standard for mosquito surveillance and collection. Like the New Jersey light trap, it attracts many different species, but it is portable. A 6V battery powers a motorized fan that circulates carbon dioxide (CO2) as an attractant. Once they enter the trap, mosquitoes are sucked into a collection device. CDC traps are most effective when deployed at dawn and dusk when mosquitoes are most active.

mosquito trapsBG-Sentinel Trap

This trap is designed to capture Aedes albopictus (Asian Tiger mosquito) and Aedes aegypti (Yellow Fever mosquito), each of which are known to carry diseases, including Dengue, Chikungunya, Zika virus, and Yellow Fever. Both species thrive in urban environments where they can breed in natural and artificial containers such as gutters, bird baths, watering cans, and outdoor equipment. The BG-Sentinel trap, which is made of a tarp-like material, utilizes an attractant to lure mosquitoes into a funnel. The funnel is outfitted with an electric fan that pulls them into a net where they will remain until collection.

mosquito trapsGravid Trap

Gravid traps are designed to catch Culex mosquitoes, such as Culex tarsalis or Culex pipiens. These species are capable of spreading West Nile virus, St. Louis Encephalitis, and both Western and Eastern Equine Encephalitis. Each trap is filled with stagnant water containing organic matter like grass or hay to mimic natural breeding grounds. As Culex mosquitoes approach, they are sucked by an electric fan into the trap for future collection.

mosquito trapsNew Jersey Light Trap

The New Jersey light trap is effective at capturing a wide spectrum of mosquito species. It is typically used as a permanent device that’s mounted and powered by an outlet in target areas. The New Jersey light trap is a beneficial tool to support IMM programs—it is capable of collecting large quantities of local mosquitoes for scientific analysis and data collection. 

PCR Tests 

Clinical tests are commonly used in the industry to identify diseases. PCR tests, for example, allow laboratory technicians to detect different bacteria or viruses that have been transmitted by mosquitoes. Though PCR tests are also used to detect Covid-19, it’s important to note that mosquitoes do not spread the SARS-CoV-2 virus.

RAMP® WNv Tests

RAMP tests are also widely used in the industry. This highly-sensitive test is designed to detect West Nile virus in mosquitoes. A RAMP test can be conducted quickly and efficiently in-house, making it particularly useful following hurricanes and weather events.

lab testing

CDC Bottle Bioassay

One of the most important tools when monitoring for insecticide resistance is the CDC Bottle Bioassay. As part of the testing process, bottles are coated with a diluted pesticide solution and then paired with a control group. Female adult mosquitoes are deposited into each bottle, where they are exposed to stressful conditions. Mortality data is then collected and analyzed by scientists for evidence of insecticide resistance. 

Larval Cup Bioassay

Larvicides are central to proactive mosquito management programs, and resistance is less common; however, it can still occur. Larval control agents work through either ingestion or contact with the target host, depending on the product used. Like the bottle bioassay process, cups are coated with bacterial larvicides like Bacillus thuringiensis israliensis (Bti), Bacillus sphaericus (Bs), or Spinosad and examined for mortality data. 

insecticide resistance - bottle assay

Modern GPS/GIS technologies have made it possible to gather large amounts of data for site mapping, disease tracking, and analysis. This information can be compared over time to identify trends or patterns that help advise the direction of management programs and ensure ongoing compliance with regulatory standards. 

Now, GPS technologies are being integrated into advanced aerial equipment. VDCI’s state of the art drones give technicians a birds-eye-view of target sites for more streamlined site surveillance and mapping, as well as more precise pesticide applications. Likewise, advanced drones allow experts to observe and treat areas that are dangerous, like swamps and wetlands, or more private, like HOAs and other large communities.

drone surveillance

Scientists have many advanced tools at their disposal for trapping, species identification, and disease testing, but the most valuable approach is preventative management. Proactive surveillance, monitoring, communication, and stakeholder education can help experts identify and quickly mitigate disease risks before a community is impacted. VDCI has the experience, necessary equipment, industry-leading technologies, and capabilities to handle all of your mosquito surveillance and disease monitoring needs.

Contact Our Experts​

Contact, or call, our experts at 866.977.6964 so that they can help you develop a custom IMM program to meet your community’s needs.

VDCI_Logo_squareSince 1992, Vector Disease Control International (VDCI) has taken pride in providing municipalities, mosquito abatement districts, industrial sites, planned communities, homeowners associations, and golf courses with the tools they need to run effective mosquito control programs. We are determined to protect the public health of the communities in which we operate. Our mosquito control professionals have over 100 years of combined experience in the field of public health, specifically vector disease control. We strive to provide the most effective and scientifically sound mosquito surveillance and control programs possible based on an Integrated Mosquito Management approach recommended by the American Mosquito Control Association (AMCA) and Centers for Disease Control and Prevention (CDC). VDCI is the only company in the country that can manage all aspects of an integrated mosquito management program, from surveillance to disease testing to aerial application in emergency situations.

The IMM Advantage

CDC Mosquito control disease monitoring

The IMM Advantage

Mosquito — the eight-letter word that no one likes to hear or, even worse, be around. Community members can rely on several strategies to limit their itchy bites and thwart the pests – from insect repellents to reducing breeding habitats. However, these approaches alone will not produce lasting results or provide insights into the threat level that mosquito-borne diseases pose in your community. The safest, most effective, and long-lasting solution is prevention through a proactive and holistic Integrated Mosquito Management (IMM) program, which targets mosquitoes at all stages of their life cycle, giving your community peace of mind.

surveillance and disease testing - lab testing - mosquito control - vdci - vector management - markets served

A successful IMM program leans on both science-based tactics and educational initiatives:

CDC Mosquito control disease monitoringSurveillance & Disease Testing

Surveillance involves close observation and analysis of mosquito populations, distribution, density, and species composition throughout a targeted area. By gathering extensive data, scientists can create a customized management approach that’s designed to target mosquitoes in the right areas, at the right times, with the right product. This optimizes product use and most effectively reduces the risk of vector-borne disease.

Mosquito management strategies vary depending on their lifecycle stage. For example, mosquitoes require water to lay their eggs, and larval surveillance data allow experts to identify these habitats and treat them using biological control or EPA-registered larvicides.

The management of adult mosquitoes can be more complex. When it comes to adult mosquito surveillance, experts often utilize mosquito traps to collect, count, and identify mosquito species and determine the particular disease risk in a given area. Each mosquito species has unique host preferences, activity times, and habitat use. Certain species are also more likely to carry and transmit pathogens. Correctly identifying species and understanding their bionomics helps ensure they are managed most effectively. 

insecticide resistanceMonitoring for Insecticide Resistance

An important component of IMM programs is insecticide resistance. Monitoring for chemical resistance should begin at the start of the season and continue throughout the season. Long-term resistance data is valuable because it allows experts to identify trends and modify their mosquito management approach as needed. 

Insecticide resistance most often occurs due to overuse or overreliance on a single class of products. The continued use may reduce population sensitivity and eventually cause selection for resistant insects. Irresponsible product use by homeowners and agriculture can undermine mosquito control efforts, waste funds and resources, and increase the risk of an unmanageable disease crisis. The 2016 Zika outbreak in Miami-Dade County after Hurricane Irma illustrated the reality and danger of insecticide resistance.

Technologies Utilized in Mosquito Control

Ground Crews

Vector-control specialists rely on many types of tools and technologies to achieve mosquito control. Ground crews utilize backpack power sprayers or Ultra-Low Volume (ULV) spray trucks capable of treating highly specific areas. Equipment is specially designed and calibrated for optimal product distribution, with all data recorded in VDCI’s proprietary database. 

vdci spraying mosquito control treatment

Aerial Fleet

Aircraft can be used to treat habitats that are difficult to access due to flooding, compromised infrastructure, or road closures. VDCI’s aerial fleet utilizes highly specialized technology and incorporates real-time meteorological data to determine optimal application efficacy.  

In addition to specialized aircraft, VDCI also utilizes state-of-the-art drones (unmanned aerial systems) that are programmed with advanced GPS technology to map target sites and ensure the precise application of liquid or granular products. Drones bridge the gap between ground and plane applications and allow for wide-area coverage of previously unreachable terrain.

drone applications for mosquito control

Public Education

Mosquito management initiatives backed by science and modern technologies can be highly effective, but a lack of public awareness can ultimately limit the success of these efforts. The role of public education in an IMM program cannot be overlooked. Not only will informed citizens better protect themselves from vector-borne diseases, but they can also assist in removing mosquito habitats and reporting areas of concern.

Public-Education-Source-Reduction-Larval-Habitats

Public education starts with establishing strategic partnerships within the community. VDCI partners with health departments, schools, churches, and other community groups to share accurate information and strategies to support city and state governments or mosquito abatement districts. Community members are taught to remember the 4 D’s:

  • Defend – Protect yourself by using an EPA-approved repellent.
  • Dress – Wear light-colored clothing, closed-toe shoes, long sleeves, and long pants when spending time outside.
  • Drain – Mosquitoes need water to complete their life cycle, and even something as small as a bottle cap can hold dozens of mosquito larvae.
  • Dusk & Dawn – Stay indoors during these times of day when mosquitoes are most active. 

There is no one solution to control mosquitoes. IMM programs are complex, customized, and ever-changing. Success is best achieved by merging surveillance and monitoring efforts with advanced knowledge and technology. And the better the community understands its role in that equation, the more favorable the outcome can be.

Contact Our Experts

Contact, or call, our experts at 866.977.6964 so that they can help you develop a custom IMM program to meet your community’s needs.

VDCI_Logo_squareSince 1992, Vector Disease Control International (VDCI) has taken pride in providing municipalities, mosquito abatement districts, industrial sites, planned communities, homeowners associations, and golf courses with the tools they need to run effective mosquito control programs. We are determined to protect the public health of the communities in which we operate. Our mosquito control professionals have over 100 years of combined experience in the field of public health, specifically vector disease control. We strive to provide the most effective and scientifically sound mosquito surveillance and control programs possible based on an Integrated Mosquito Management approach recommended by the American Mosquito Control Association (AMCA) and Centers for Disease Control and Prevention (CDC). VDCI is the only company in the country that can manage all aspects of an integrated mosquito management program, from surveillance to disease testing to aerial application in emergency situations.

Reshaping the Mosquito Control Industry with Advanced Technology

SOL_VDCI_Day1_finals_2915_737

Every year, new technologies emerge that help keep people safer, healthier, and happier. This includes technologies used in the mosquito management industry.

Vector-borne diseases spread by mosquitoes are responsible for killing more than one million people annually. That’s why the development of new innovations is key in the mission to prevent mosquitoes from endangering communities worldwide. 

When we choose to utilize advanced technologies, it’s because they enhance the accuracy, efficacy, and safety of our work. Here are some of the innovations we utilize as part of an Integrated Mosquito Management program to help keep the communities we serve safe.

Without data, it’s difficult to understand the effectiveness of mosquito control efforts or fully demonstrate to stakeholders the financial return of their investment. It’s also more challenging to strategize an effective management plan. GIS mapping can be utilized in nearly every facet of an integrated mosquito management program, from tracking larval and adulticide applications to monitoring mosquito populations and disease data. Over time, this information can be analyzed to identify trends or patterns and determine the overall impact of treatment efforts.

arcmap_biggerBeyond the day to day operations of an IMM program, GIS technology has several other applications. GIS serves as a critical tool for regulatory compliance, as maps can be used to both assure compliance and also streamline requirements for initiatives like NPDES permitting. Maps that show disease monitoring in a given area can also be used to support public education and communications throughout the community. Lastly, federal, state, and local governments use GIS to aid in emergency response efforts.

Mosquito Trapping and Lab Analysis

Mosquito Surveillance & Disease Testing Reduce Mosquito-borne Disease 3Mosquito traps are not used to control adult mosquitoes; rather, they serve as an important tool for collecting data on species distribution, population dynamics, and calculating disease risk based on vector competence.

Our professionals utilize several types of traps, including the CDC Miniature Light Trap, Gravid Trap, BG-Sentinel, and New Jersey Light Trap, just to name a few.  Collection, counting, and identification of the mosquitoes help staff determine which abatement solutions should be employed.  Once collected, mosquitoes also undergo professional testing and analysis at the lab. Oftentimes, the diseases mosquitoes can transmit can be detected in the mosquitoes themselves weeks before they can be passed on to their human and animal hosts. This gives mosquito management experts a window of opportunity to take action to reduce the risk of human disease transmission in the local community.

Mosquito management professionals utilize several technologies when conducting larviciding and adulticiding applications.

CDCMosquito-adult-larviciding-2-scaled

Ground Application Technology

For smaller areas, crews may choose to perform ground applications using either backpacks or power sprayers capable of holding 2-100 gallons of product.  Whether an application is done by hand or with specialized truck-based equipment, they’re calibrated frequently, and all applications are recorded in VDCI”s proprietary database.  

Planes

For large areas that need to be treated quickly or places you simply can’t access with vehicles, aerial fleets are the go-to option. VDCI operates one of the world’s largest aerial fleets dedicated to mosquito control and services customers from coast to coast.

Aerial Spraying Malcom 9

Aircraft equipped for adult mosquito control utilize the Wingman® GX spray optimization and guidance software in addition to an AIMMS-20 onboard meteorological probe to ensure the most effective application possible. This integrated system is the only scientifically validated one of its kind that incorporates constant real-time meteorological data at the release height to optimize the entire application. This optimization ensures that the maximum spray cloud droplet density is delivered to the target zones, thus providing you with the maximum level of mosquito control.

Each member of VDCI’s flight crew is highly trained and licensed through the Federal Aviation Administration (FAA). Crews utilize military-grade ANVIS -6 night vision goggles on all nighttime spray missions to increase visibility and accuracy. At the completion of each spray mission, data is downloaded from the aircraft, and reports are generated, providing our customers with a visual depiction of the spray mission, along with the vital statistics of each spray.

Unmanned Aerial Drones

Recent advancements in drone technology have provided a new way to reach and treat areas that were previously inaccessible via ground or plane.

SOL_VDCI_Day1_finals_2224_483

Our drones are custom-built by Leading Edge Aerial Technologies, Inc. for commercial applications. Each drone exhibits a 6ft wingspan and is equipped with superior features that are operated remotely by a professional team. Drones are supported by GPS technology to access mapped target sites and guide precision applications using a variety of liquid or granular products. They are also configured with state-of-the-art software that blocks filming, so homeowners can have peace of mind while drone applications occur nearby.

VDCI Remains At The Forefront of Vector Industry Advancements

VDCI is committed to staying at the forefront of technological advancements in the mosquito management industry and creating new standards for safety and efficiency. We employ a wide array of technology, ranging from advanced software systems to state-of-the-art application equipment, to provide you with the most comprehensive mosquito management services possible. Contact or call our experts at 866.977.6964 to discuss the most effective control solutions for your community.

VDCI Wants To Make Your Property Safer.
How Can We Help?

Fill out the information below, and one of our experts will follow up with you shortly.

VDCI_Logo_squareSince 1992, Vector Disease Control International (VDCI) has taken pride in providing municipalities, mosquito abatement districts, industrial sites, planned communities, homeowners associations, and golf courses with the tools they need to run effective mosquito control programs. We are determined to protect the public health of the communities in which we operate. Our mosquito control professionals have over 100 years of combined experience in the field of public health, specifically vector disease control. We strive to provide the most effective and scientifically sound mosquito surveillance and control programs possible based on an Integrated Mosquito Management approach recommended by the American Mosquito Control Association (AMCA) and Centers for Disease Control and Prevention (CDC). VDCI is the only company in the country that can manage all aspects of an integrated mosquito management program, from surveillance to disease testing to aerial application in emergency situations.